Cho hình bình hành ABCD có AB = 2AD. Gọi M và N theo thứ tự là trung điểm của AB và CD
a) Chứng minh tứ giác AMND là hình thoi.
b) Chứng minh MD//BN và MD\(\perp\)MC
c) Gọi P là giao điểm của AN và MD, gọi Q là giao điểm của BN và MC. Hình bình hành ABCD có thêm điều kiện gì thì MNPQ là hình vuông?
a) Ta có: \(AB//CD\left(hbhABCD\right)\Rightarrow AM//DN\)
\(AB=CD\left(hbhABCD\right)\Rightarrow AM=DN=\dfrac{1}{2}AB=\dfrac{1}{2}CD\)
Tứ giác AMND có: \(AM//DN;AM=DN\left(cmt\right)\)
\(\Leftrightarrow AMND\) là hbh ( dấu hiệu)
b) Ta có: \(AB//CD\left(hbhABCD\right)\Rightarrow MB//DN\)
\(AB=CD\left(hbhABCD\right)\Rightarrow BM=DN=\dfrac{1}{2}AB=\dfrac{1}{2}CD\)
Tứ giác MBND có: \(MB//DN;MB=DN\left(cmt\right)\)
\(\Leftrightarrow MBND\) là hbh ( dấu hiệu) \(\Rightarrow DM//BN\left(t/c\right)\)a: Xét tứ giác AMND có
AM//ND
AM=ND
AM=AD
DO đó: AMND là hình thoi
b: Xét tứ giác MBND có
MB//ND
MB=ND
Do đó: MBND là hình bình hành
=>MD vuông góc với BN
Xét tứ giác MBCN có
MB//CN
MB=CN
MB=BC
Do đó: MBCN là hình thoi
=>MC vuông góc với BN tại Q và Q la trung điểm chung của MC và BN
=>MD vuông góc với MC
c: Xét tứ giác MPNQ có góc MPN=góc MQN=góc PMQ=90 độ
nên MPNQ là hình chữ nhật
Để MNPQ là hình vuong thì PM=PN
=>AN=MD
=>AMND là hình chữ nhật
=>góc BAD=90 độ