Cho hình bình hành ABCD có DC=2AD=2a. Từ trung điểm I của Dc hạ IH vuông góc với AB tại H; DC cắt AI tại E.
a. chứng minh AE là phân giác của góc DAH
b. CHứng minh 1/AH^2 =1/AI^2 + 1/BI^2
c. cho góc ADC =30 độ. tính AI theo a.
cho hình bình hành ABCD có AB=2AD=2a. Từ trung điểm I của AB hạ IH vuông góc với CD, DI cắt AH tại E
1)CM: tam giác ADI cân, từ đó => \(\dfrac{AE}{EH}=\dfrac{AD}{DH}\)
2)gọi K là trung điểm của CD, CM: AIKD là hình thoi
Cho hình bình hành ABCD có DC = 2AD=2a. Từ trung điểm I của DC kẻ IH vuông góc với AB tại H, DH cắt AI tại E. CM: 1/IH^2=1/AI^2 + 1/BI^2
Cho hình bình hành ABCD, góc A = 120 độ, phân giác góc D đi qua trung điểm I của AB.
a) Chứng minh AB=2AD.
b) Kẻ AH vuông góc với DC. Chứng minh DI=2AH.
c) Chứng minh AC vuông góc với AD.
Cho hình chữ nhật ABCD (AB>BC). Kẻ AE vuông góc BD tại E. AE cắt BC, CD lần lượt lại G, F. Gọi I, H là trung điểm của BF, DG. Chứng minh IH vuông góc EC.
cho hình bình hành ABCD có DC=2AD, từ trung điểm I của cạnh CD vẽ HI vuông góc với AB (H thuộc AB). Gọi E là gia điểm của AI và DH. CMR
a, DE/HE=DA/HA
b, 1/IH^2=1/IA^2+1/IB^2
cho hình bình hành ABCD có DC=2DA từ trung điểm I của CD vẽ IH vuông góc AB (H thuộc AB ) gọi E là giao điểm của AI,DH
chứng minh
a) \(\frac{DE}{HE}=\frac{DA}{HA}\)
b)\(\frac{1}{IH^2}=\frac{1}{AI^2}+\frac{1}{BI^2}\)
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Cho đường tròn tâm O, đường kính AB. Lấy điểm I thuộc đoạn OB. Qua I kẻ dây CD không vuông góc với AB. gọi N là trung điểm của CD. Từ A kẻ AH vuông góc CD. BN cắt AH tại?
a) chứng minh BN=MN
b) chứng minh tứ giác CMDB là hình bình hành
c) chứng minh CM vuông góc AD
Cho hình thang ABCD vouông tại A và D DC//AB.biết AD bằng CD bằng 1/2 AB CH vuông AB tại H,ACgiao DC tại K,BD giao CH tại I
a Tính các góc hình thang ABCD
b Tính độ dài đoạn DI nếu AB bằng 10cm
c M là điểm chuyển động trên AD kẻ CM cắt AB tại N. CHỨNG MINH 1/CM*2+1/CN*2 không đổi