cho hình bình hành ABCD có A=120 độ.tia phân giác góc D qua trung điểm I của AB kẻ AH vuông góc DC .CMR
a) AI=2DH
b) DI=2AH
c) AC vuông góc AD
Cho hình bình hành ABCD, góc A= 120 độ. Phân giác góc D đi qua trung điểm I của AB.
a) Chứng minh AB=2AD.
b)Kẻ AH vuông góc vs DC. Chứng minh DI=2AH.
c) Chứng minh AC vuông góc với AD.
1,cho hình bình hành ABCD có o là giao của hai đường chéo trên đường chéo ac lấy AE=AF=FC
a,BEDF là hình bình hành
b,DF cắt BC tại M Chứng minh DF =2FM
c,BF cắt DC tại I và DE cắt AB tại J CMR 3 điểm IOJ thẳng hàng
2,Cho hình bình hành ABCD Có A=120 Tia phân giác góc D qua trung điểm I Của AB Kẻ AH vuông góc CD
CMR a,AI=2BH
b,DI=2AH
c,AC vuông góc AD
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
các bạn giải hộ mình bài này với
Cho hình bình hành ABCD có góc A = 120 độ , tia phân giác của góc D đi qua trung điểm I của AB
a) Chứng minh rằng AB = 2 AD
b) Kẻ AH vuông góc CD . Chứng minh DI = 2 AH
c) Chứng minh AC vuông góc AD
mình giải được phần a) rồi các bạn giải cho mình phần b) và phần c) nhé
ai giải được mình tick cho các bạn giải hộ gấp mai mình đi học rồi
Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho hình thang vuông ABCD có AB // CD, DC = 2AB, AD vuông góc AB. Kẻ AH vuông góc AC tại H, M tương ứng là trung điểm của HD và HC, AM cắt DN tại K, E là trung điểm của DC
1. Chứng minh ABNM là hình bình hành
2. Chứng minh M là trực tâm của tam giác DAN
3. Chứng minh BN vuông góc với ND và MN đi qua trung điểm của HE
Giúp mình nha, thanks nhìu ^^