Cho hình bình hành ABCD, \(AB=\frac{3}{2}AD\). Đường phân giác góc A cắt CD tại E, đường phân giác góc D cắt AB tại F. Hai đường thẳng này cắt nhau tại M.
a)Chứng minh ADEF là hình thoi.
b)Đường phân giác của các góc B và C cắt nhau tại N. Chứng minh N thuộc đoạn thẳng EF.
c)Cho thêm giả thiết góc A =120 độ, chứng minh rằng MNCE là hình thoi
a) Ta có :
Góc BAD + Góc ADC = 180o
\(\Rightarrow\frac{1}{2}\widehat{BAD}+\frac{1}{2}\widehat{ADC}=\frac{1}{2}.180^o\)
\(\Rightarrow\widehat{MAD}+\widehat{MDA}=90^o\)
Xét \(\Delta MAD\)có \(\widehat{MAD}+\widehat{MDA}=90^o\Rightarrow\widehat{AMD}=90^o\)
\(\Rightarrow\widehat{AMD}=\widehat{AMF}=\widehat{DME}=90^o\)( SỬ dụng góc kề bù để suy ra )
Xét \(\Delta AMD\)và \(\Delta AMF:\)
\(\widehat{DAM}=\widehat{FAM}\)( AE là phân giác \(\widehat{A}\))
Chung cạnh AM
\(\widehat{AMD}=\widehat{AMF}\)( cmt )
\(\Rightarrow\Delta AMD=\Delta AMF\left(g.c.g\right)\)
\(\Rightarrow M\)là trung điểm DF
Xét \(\Delta AFM\)và \(\Delta EDM\), có :
\(\widehat{AFM}=\widehat{EDF}\)( 2 góc so le trong vì AF//DE )
\(FM=DM\)( M là trung điểm DF )
\(\widehat{FMA}=\widehat{DME}=90^o\)
\(\Rightarrow\Delta AMF=\Delta EMD\left(g.c.g\right)\)
\(\Rightarrow\)M là trung điểm AE
Tứ giác ADEF có hai đường chép vuông góc với nhau tại trung điểm mỗi đường nên là hình thoi.
b) Từ N kẻ đường thằng song song với AB ( CD ); cắt BC tại K.
Có \(\widehat{FBN}=\widehat{BNK}\)( So le trong )
Mà \(\widehat{FBN}=\widehat{KBN}\)( BN là phân giác góc B )
\(\Rightarrow\widehat{BNK}=\widehat{KBN}\) nên tam giác KBN cân tại K; hay BK = NK
Tương tự chứng minh tam giác CNK cân tại K; hay NK = KC
\(\Rightarrow BK=KC;\)hay K là trung điểm BC
\(AB\text{//}CD\Rightarrow FB\text{//}EC\)
\(\Rightarrow FBCE\)là hình thang
Xét hình thang FBCE có :
\(NK\text{//}FB\text{//}FC\)
\(K\)là trung điểm BC
\(\Rightarrow NK\)là đường trung bình hình thang, hay N là trung điểm FE, tức N nằm trên EF
Vậy ...
c) \(AB=\frac{3}{2}AD\) nên đặt \(AD=2\alpha;AB=3\alpha\)
Ở phần a đã chứng minh \(\Delta AMD=\Delta AMF\Rightarrow AD=AF=2\alpha\)(2 cạnh tương ứng )
Xét tam giác EAF : N là trung điểm FE ; M là trung điểm AE nên MN là đường trung bình
\(\Rightarrow MN=\frac{1}{2}AF=\frac{1}{2}\left(2\alpha\right)=\alpha\)
Vì góc A = 120o nên \(\widehat{FAM}=\frac{1}{2}.\widehat{A}=\frac{120^o}{2}=60^o\)
\(\Rightarrow\widehat{MFA}=90^o-\widehat{FAM}=30^o\)
Xét tam giác AMF vuông tại M có 2 góc nhọn là 60o và 30o \(\Rightarrow AM=\frac{1}{2}FA=\frac{1}{2}\left(2\alpha\right)=\alpha\)(Mình chứng minh bên dưới
Mà \(AM=ME\Rightarrow ME=\alpha\)
Do ABCD là hình bình hành nên góc BCD cũng bằng góc A và bằng 120o
\(\Rightarrow\widehat{BCN}=\frac{1}{2}\widehat{C}=\frac{120^o}{2}=60^o\)
\(\Rightarrow\widehat{CBN}=90^o-\widehat{BCN}=30^o\)
Xét tam giác vuông BNC vuông tại N có 2 góc nhọn là 30o và 60o nên \(NC=\frac{1}{2}BC=\frac{1}{2}AD=\frac{1}{2}\left(2\alpha\right)=\alpha\)
AFED là hình thoi nên \(FA=DE=2\alpha\)
Lại có \(CD=AB=3\alpha\)
\(\Rightarrow CD-DE=EC=3\alpha-2\alpha=\alpha\)
Tứ giác \(MNCE\)có 4 cạnh bằng nhau và bằng \(\alpha\) nên là hình thoi.
Vậy ...
À quên :) Cách chứng minh một tam giác vuông có một góc 60 độ / 30 độ thì cạnh góc vuông nhỏ hơn sẽ bằng nửa cạnh huyền.
Xét tam giác SQP vuông tại Q và \(\widehat{P}=60^o;\widehat{S}=30^o\)
Trên tia đối của QP, lấy J sao cho JQ=QP.
Xét \(\Delta SJP\)có \(SQ\)vừa là đường cao, vừa là trung tuyến nên là tam giác cân, lại có \(\widehat{S}=60^o\)nên là tam giác đều.
\(\Rightarrow JP=SQ\)
\(\Rightarrow2.QP=SQ\)
\(\Rightarrow SQ=\frac{1}{2}SQ\)
Vậy ...
cho em hỏi bài này cái, please!!
Cho tam giác ABC cân tại A , D là trung điểm của cạnh AB . Trên tia đối của tiaBA lấy điểm E sao cho BE=BA .c/m:CD=1/2CE
là sao vậy bạn. à mà bạn có thể giúp mình bài toán trên đc ko