Cho tam giác $A B C$ có trung tuyên $A M$. Gọi $I$ là trung điếm của $A M$ và $K$ là điếm trên cạnh $A C$ sao cho $A K=\dfrac{1}{3} A C$. Chứng minh rằng ba điểm $B, I, K$ thẳng hàng. Ta có $\overrightarrow{B I}=\dfrac{1}{2}(\overrightarrow{B A}+\overrightarrow{B M})=\dfrac{1}{2}\left(\overrightarrow{B A}+\dfrac{1}{2} \overrightarrow{B C}\right)$
Trên các cạnh $A B, B C, C A$ của $\triangle A B C$ lấy các điểm $A^{\prime}, B^{\prime}, C^{\prime}$ sao cho $\dfrac{A A^{\prime}}{A B}=\dfrac{B B^{\prime}}{B C}=\dfrac{C C^{\prime}}{A C}$. Chứng minh các tam giác $\triangle A B C$ và $\triangle A^{\prime} B^{\prime} C^{\prime}$ có chung trọng tâm.
Cho tam giác $A B C$ với các cạnh $A B=c, B C=a, C A=b$. Gọi I là tâm đường tròn nội tiếp tam giác $\mathrm{ABC}$. Chứng minh rằng $a \overrightarrow{I A}+b \overrightarrow{I B}+c \overrightarrow{I C}=\overrightarrow{0}$.
Cho tam giác $A B C$ có trực tâm $\mathrm{H}$, trọng tâm $\mathrm{G}$ và tâm đường tròn ngoại tiếp $\mathrm{O}$. Chứng minh rằng
a) $\overrightarrow{H A}+\overrightarrow{H B}+\overrightarrow{H C}=2 \overrightarrow{H O}$.
b) $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O H}$.
c) $\overrightarrow{G H}+2 \overrightarrow{G O}=\overrightarrow{0}$.