\(H=\frac{9}{4}-x^2+2x=\frac{13}{4}-x^2+2x-1=\frac{13}{4}-\left(x-1\right)^2\)
Do \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow\frac{13}{4}-\left(x-1\right)^2\le\frac{13}{4}\)
=>GTLN A=13/4 <=>(x-1)2=0<=>x=1
H = - ( x^2 - 2x - 9/4) = - ( x^2 - 2x + 1 - 13/4 ) = - ( x - 1)^2 +13 /4
GTLN của H là 13/4 khi x = 1