Sửa đề \(\hept{\begin{cases}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{cases}}\)
Ta có; \(\left(x+y+z\right)^2=1\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=1\)
\(\Leftrightarrow xy+yz+zx=0\)
Ta lại có:
\(x^3+y^3+z^3-3xyz+3xyz=1\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz=1\)
\(\Leftrightarrow3xyz=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
Với \(x=0\)
\(\Rightarrow\hept{\begin{cases}y=0\\z=1\end{cases}}\)hoặc \(\hept{\begin{cases}y=1\\z=0\end{cases}}\)
\(\Rightarrow x+y^2+z^3=1\)
Tương tự cho các trường hợp còn lại.
Cái hệ vô nghiệm mất tiêu rồi. Xem lại đề đi b