Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Diệp Song Thiên

Cho \(\hept{\begin{cases}a,b,c>0\\\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3\end{cases}}\)

Tìm max A = \(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+a+c\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\)

Help me pliz T^T

 

Incursion_03
17 tháng 6 2019 lúc 9:46

Áp dụng bđt Cô-si có'

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(1)

Áp dụng bđt trên ta được

\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow\left(\frac{1}{2a+b+c}\right)^2\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2\)

Chứng minh tương tự rồi cộng các vế lại cho nhau ta được

\(A\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\frac{1}{16}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)

\(\Rightarrow16A\le\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)

               \(=\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}+\frac{2}{\left(a+b\right)\left(a+c\right)}+\frac{2}{\left(b+c\right)\left(a+b\right)}+\frac{2}{\left(a+c\right)\left(b+c\right)}\)

Đặt \(\left(\frac{1}{a+b};\frac{1}{b+c};\frac{1}{c+a}\right)\rightarrow\left(x;y;z\right)\)

Khi đó \(16A\le2x^2+2y^2+2z^2+2xy+2yz+2zx\)

Ta có bđt phụ sau : \(xy+yz+zx\le x^2+y^2+z^2\)(tự chứng minh) (2)

Áp dụng ta được

\(16A\le4x^2+4y^2+4z^2=\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

\(\Rightarrow4A\le\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\)

Từ (1) \(\Rightarrow\frac{1}{\left(x+y\right)^2}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)(Bình phương 2 vế lên) 

Áp dụng bđt này ta được

\(4A\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)^2+\frac{1}{16}\left(\frac{1}{b}+\frac{1}{c}\right)^2+\frac{1}{16}\left(\frac{1}{c}+\frac{1}{a}\right)^2\)

\(\Rightarrow64A\le\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{ac}+\frac{1}{a^2}\)

\(\Rightarrow64A\le\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Áp dụng bđt (2) ta được \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3+3=6\)

\(\Rightarrow A\le\frac{6}{32}=\frac{3}{16}\)
Dấu "=" xảy ra tại a=b=c = 1

T.Ps
17 tháng 6 2019 lúc 9:53

#)Em thấy có link này có cách giải ngắn gọn hơn nek :

https://h.vn/hoi-dap/tim-kiem?q=cho+c%C3%A1c+s%E1%BB%91+th%E1%BB%B1c+d%C6%B0%C6%A1ng+a,b,c+thay+%C4%91%E1%BB%95i+lu%C3%B4n+th%E1%BB%8Fa+m%C3%A3n+1/a2+++1/b2+++1/c2+=3.T%C3%ACm+Max+P+=+1/(2a+b+c)2++1(2b+a+c)2++1/(2c+a+b)2&id=394201

Ai cần link này ib e nhé ! e gửi cho chị #Diệp Song Thiên đã ^^


Các câu hỏi tương tự
Nguyễn Ngọc Linh
Xem chi tiết
Teendau
Xem chi tiết
Lê Phan Anh Thư
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
Xem chi tiết
Huy Bùi
Xem chi tiết
trần xuân quyến
Xem chi tiết
Wakanda forever
Xem chi tiết
Bùi Quốc Huy
Xem chi tiết
misu
Xem chi tiết