cho hệ phương trình\(\hept{\begin{cases}3x-my=-9\\mx+2y=16\end{cases}}\)
a) giải hệ phương trình khi m = 5
b) chứng tỏ rằng hệ phương trình luôn luôn có nghiệm duy nhất với mọi m
c) định m để hệ có nghiệm (x ; y) = (1,4 ; 6,6)
d) với trị nguyên nào của m để hệ có nghiệm (x ; y) thỏa mãn x + y = 7
Cho hệ phương trình 2x + y = 3 và 3x+2y= m (m là tham số)
a) Chứng tỏ rằng hệ phương trình luôn có một nghiệm duy nhất với mọi m. tìm nghiệm đó
b) với giá trị nào của m thì hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x >0 và y>0 (x=6-m; y=2m-9)
\(\hept{\begin{cases}2x-my=-3\\mx+3y=4\end{cases}}\)Cho hệ phương trình : 1 . Chứng minh rằng hệ phương trình luôn có nghiệm duy nhất khi m thay đổi
2 . Tìm giá trị nguyên lớn nhất của m để hệ có nghiệm ( x0;y0) thỏa mãn
Cho hệ phương trình gồm 2 phương trình : (m+1)x+3y=5 và 5x-2y=3 với m là tham số <=> Không biết cách viết hpt thông cảm :((
a) Với giá trị nào của m thì hệ phương trình đã cho vô nghiệm,có nghiệm duy nhất
b)Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y=5
Mng giúp với :3
Cho hệ phương trình:\(\hept{\begin{cases}mx-y=2\\-x-my=-3\end{cases}}\)
a, CM hệ luôn có nghiệm với mọi giá trị của m
b, Tìm m để hệ có nghiệm (x;y) thỏa mãn ĐK: 2x + y = 0
Cho hệ pt: \(\left\{{}\begin{matrix}3x-y=2\\9x-my=m\end{matrix}\right.\)
1. Với giá trị nào của m thì hệ phương trình vô nghiệm
2. Với giá trị nào của m thì hệ phương trình có vô số nghiệm?
3. Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất
4. Tìm m để hệ có nghiệm duy nhất x> 0; y<0
Định m để hệ phương trình có nghiệm duy nhất thỏa mãn hệ thức cho trước
Cho hệ phương trình:\(\hept{\begin{cases}mx+4y=9\\x+my=8\end{cases}}\)
Với gia trị nào của m để hệ có nghiệm thỏa mãn hệ thức: \(2x+y+\frac{38}{m^2-4}=3\)
cho hệ phương trình \(\hept{\begin{cases}4x-3y=m-10\\x+2y=3m+3\end{cases}}\) m là tham số
tìm m để hệ phương trình luôn có nghiệm duy nhất (x,y) thỏa mãn \(x^2+y^2\) đạt giá trị nhỏ nhất
Đh inm để hệ phương trình có nghiệm duy nhất thỏa mãn hệ thức cho trước
Cho hệ phương trình:\(\hept{\begin{cases}mx+4y=9\\x+my=8\end{cases}}\)
Với gia trị nào của m để hệ có nghiệm thỏa mãn hệ thức: \(2x+y+\frac{38}{m^2-4}=3\)