Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+\left(m-1\right)y=2\\\left(m+1\right)x-y=m+1\end{matrix}\right.\)
a, giải hệ với m = 1/2
b, Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn điều kiện x>y
Cho hệ phương trình\(\left\{{}\begin{matrix}x+my=1\\mx+y=1\end{matrix}\right.\)
tìm m để nghiệm có hệ duy nhất thỏa mãn x+2y=5.
Làm rõ bước
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)(m là tham số)
Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y<0
Bài 2 : Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất(x;y) thỏa mãn:
(2m - 1)x + (m + 1)y = m (3)
cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=-1\\x+y=-m\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất thỏa mãn \(y^2=x\)
\(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
1. Tìm m để hệ có nghiệm duy nhất (x,y) trong đó x,y trái dấu
2. Tìm m để hệ có nghiệm duy nhất (x,y) thỏa mãn x=|y|