Bài 1: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)
a) Giải và biện luận hề phương trình.
b) Tìm các giá trị của m để nghiệm của hệ phương trình là các số nguyên
c) tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất
Bài 2: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)
a) Giải và biện luận hệ phương trình theo m
b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.
Cho hệ phương trình: \(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)(m là tham số)
Tìm giá trị của m dể hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0
Cho hệ phương trình ẩn (x;y), tham số m: \(\hept{\begin{cases}mx+4y=6\\x+my=3\end{cases}}\). Tìm giá trị của m để hệ đã cho có nghiệm duy nhất.
cho hệ phương trình \(\hept{\begin{cases}mx+2y+1\\3x+\left(m+1\right)y=-1\end{cases}}\)(m là tham số)
Tìm các giá trị nguyên của m để hệ phương trình có nghiệm duy nhất (x;y) sao cho x và y là các số nguyên.
Cho hệ phương trình \(\hept{\begin{cases}mx-y=2\\3x+my=3m\end{cases}}\)(m là tham số)
Tìm các giá trị nguyên của m để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn (x+y)(\(m^2\)+3)+8=0
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
TÌm giá trị m để hệ phương trình có nghiệm duy nhất
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Tìm giá trị m để hệ phương trình trên có nghiệm duy nhất
cho hệ phương trình \(\hept{\begin{cases}4x-3y=m-10\\x+2y=3m+3\end{cases}}\) m là tham số
tìm m để hệ phương trình luôn có nghiệm duy nhất (x,y) thỏa mãn \(x^2+y^2\) đạt giá trị nhỏ nhất
m là tham số
\(\hept{\begin{cases}mx+4y=20\\x+my=10\end{cases}}\)Cho hệ phương trình
với giá trị nào của m hệ đã cho
a) có nghiệm duy nhất
b)có nghiệm duy nhất thoả mãn x+y=1