Câu 1 : Xác định m để bất phương trình có tập nghiệm là R
1 \(\le\) \(\frac{3x^2-mx+5}{2x^2-x+1}< 6\)
Câu 2 :Xác định m để hệ bất phương trình sau có nghiệm:
\(\hept{\begin{cases}x^2+2x-15< 0\\\left(m-1\right)x\ge3\end{cases}}\)
Tìm m để các hệ bất phương trình sau : có nghiệm, vô nghiệm, có nghiệm duy nhất ( Làm cả 3 cái đó trong 1 hệ chứ không phải là chỉ làm 1 cái trong 1 hệ thôi đâu ! )
a) \(\hept{\begin{cases}x+m-1>0\\3m-2-x>0\end{cases}}\) b) \(\hept{\begin{cases}x-1>0\\mx-3>0\end{cases}}\) c) \(\hept{\begin{cases}x+4m^2\le2mx+1\\3x+2>2x-1\end{cases}}\)
c) \(\hept{\begin{cases}7x-2\ge-4x+19\\2x-3m+2< 0\end{cases}}\) d) \(\hept{\begin{cases}mx-1>0\\\left(3m-2\right)x-m>0\end{cases}}\)
MỌI NGƯỜI GIÚP EM VỚI ! CẢM ƠN NHIỀU Ạ !!!
tìm m để hệ bất phương trình:
\(\hept{\begin{cases}x^2-1\le\\\left(m-x^2\right)\left(x+m\right)< 0\end{cases}0}\) vô nghiệm
Cho hệ bất phương trình : \(\hept{\begin{cases}x^2-6x+5\le0\\x^2-2\left(a+1\right)x+a^2+1\le0\end{cases}}\) Để hệ bất phương trình có nghiệm , giá trị của a là :
cho hệ bất phương trình \(\hept{\begin{cases}x+m\le0\left(1\right)\\-x+5< 0\left(2\right)\end{cases}}\)hệ đã cho có nghiệm khi và chỉ khi
Giải hệ phương trình:
\(\hept{\begin{cases}x+2my-z=1\\2x-my-2z=2\\x-\left(m+4\right)y-z=1\end{cases}}\)
có nghiệm (x;y;z) với m khác 0 và -4/3
Cho hệ phương trình
\(\hept{\begin{cases}\left(2m+1\right)x-3y=3m-2\\\left(m+3\right)x-\left(m+1\right)y=2m\end{cases}}\)
Tìm m để hệ có nghiệm duy nhất (x;y) sao cho
\(P=x^2+3y^2\)nhỏ nhất
tìm m ϵ Z để hệ phương trình sau có nghiệm nguyên
a) \(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m+1\right)x+\left(3m+1\right)y=2-m\\2x+\left(m+2\right)y=4\end{matrix}\right.\)
Giúp tôi giải bài toán này với, cảm ơn
a) \(\hept{\begin{cases}2x^3-9y^3=\left(x-y\right)\left(2xy+3\right)\\x^2-xy+y^2=3\end{cases}}\)
b) Chứng minh phương trình sau có đúng một nghiệm:
\(x^5-x^2-2x-1=0\)
Mình cần gấp lắm