Đường thẳng qua D không có tính chất gì à?
Đường thẳng qua D không có tính chất gì à?
Cho hình thang ABCD(AB//CD), AC cắt BD tại I, AD cắt BC tại K, IK cắt AB,CD theo thứ tự M,N
a) CM \(\frac{AM}{DN}=\frac{AI}{CI}\)
b)CM \(AM\cdot CN=AB\cdot KD\)
c)CM \(\frac{AM}{CN}=\frac{AI}{CI}\)
Cho hình thang ABCD(AB//CD), AC cắt BD tại I, AD cắt BC tại K, IK cắt AB,CD theo thứ tự M,N
a) CM \(\frac{AM}{DN}=\frac{AI}{CI}\)
b)CM \(AM\cdot CN=AB\cdot KD\)
c)CM \(\frac{AM}{CN}=\frac{AI}{CI}\)
BA ĐƯỜNG PHÂN GIÁC TRONG AM, BN, CP CỦA TAM GIÁC ABC ĐỒNG QUI TẠI I
A) CM \(\frac{AP}{BP}\cdot\frac{BI}{NI}\cdot\frac{NC}{AC}=1\)
B) CM \(\frac{BM}{CM}\cdot\frac{CI}{PI}\cdot\frac{PA}{BA}=\frac{CN}{AN}\cdot\frac{AI}{MI}\cdot\frac{MB}{CB}\)
C) CHO AB=15, BC=17, CA=8. TÍNH IA, IB, IC
CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN CÓ AB<AC. BA ĐG PHÂN GIÁC TRONG CỦA TAM GIÁC ABC ĐỒNG QUI TẠI I. ĐG THẲNG VUÔNG GÓC VỚI AI TAI I CẮT CẠNH AB Ở M. LẤY ĐIỂM N TRÊN CẠNH AC SAO CHO AM=AN.
A) CM M, I, N THẲNG HÀNG
B) CM TAM GIÁC MBI ĐỒNG DẠNG VỚI TAM GIÁC NIC
C) CM \(AB\cdot CI^2+BC\cdot AI^2+CA\cdot BI^2=AB\cdot BC\cdot CA\)
Cho hình bình hành ABCD, 1 đường thẳng qua D cắt AB ở M, BC ở N và AC ở I.
a, C/m AM,CN không phụ nhau vào vị trí đường thẳng qua D
b,C/m ID2=IM.IN
c,C/m Đường thẳng B//AC cắt MN ở E.So sánh EM/EN và DM/DN
Cho tam giác ABC nhọn có các đường cao AA', BB', CC' và H là trực tâm.
a, CM \(BC'\cdot BA+CB'\cdot CA=BC^2\)
b, CMR \(\frac{HB\cdot HC}{AB\cdot AC}+\frac{HA\cdot HB}{BC\cdot AC}+\frac{HC\cdot HA}{BC\cdot AB}=1\)
c, Gọi D là trung điểm của BC. Qua H kẻ đt \(\perp\) DH cắt AB, AC tại M và N. CM : H là trung điểm của MN
Bài 1: Cho hình thang ABCD (AB//CD). AB cắt BD tại O, gọi M là trung điểm của AB, OM cắt CD tại N. Chứng minh rằng AM/CN = OB/OD; NC=ND
Bài 2: Cho hình bình hành ABCD, 1 đường thẳng d đi qua D cắt đường chéo AC ở I, cắt AB và BC lần lượt tại M, N. Chứng minh rằng:
a) IM/ID = ID/IN
b) MB/AB = NB/NC
4. Cho hình bình hành ABCD, kẻ đường thẳng đi qua D cắt AB ở M cắt BC ở N cái AC L
a) Chứng minh AM CB DM AB CN DN suy ra AM . CN không đổi.
b) Chung minh ID' IM. IN.
c) Vẽ Bx // AC, Bx cắt MN ở E. Chứng minh EM DM EN DN
d) Lấy K bất kỳ trên cạnh CD. KI và KN cát AB ở P và Q. Chứng minh MP/MA= MO/MB
Cho hình bình hành ABCD. Trên đường chéo AC lấy điểm I. Tia DI cắt đường thẳng AB tại M, cắt đường thẳng BC tại N. Chứng minh rằng: a) AM/AB = DM/DN = CB/CN. b) ID^2 = IM*IN