Cho đa thức f(x)=ax2+bx+c với a,b,c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên
Chứng minh rằng 2a, 2b có giá trị nguyên
Cho \(f\left(x\right)=ax^2+bx+c\) (a ,b,c là các số thực )
a) Biết 10a+2b-5c=0 . Chứng minh\(f\left(-1\right).f\left(-4\right)\ge0\)
b) Biết 13a + b + 2c=0 . Chứng minh \(f\left(-2\right).f\left(3\right)\le0\)
cho đa thức f(x)=ax^2+bx+c với a,b,c là các số thực. biết f(0),f(1),f(2) có giá trị nguyên. chứng minh 2a,2b có giá trị nguyên
Cho 2 hàm số: y=f(x)= (2a -1)x ; y=g(x)=(1+2b)x và f(0)=0; g(2)= 10. Chứng minh rằng: 4a =b.
cho hàm số y=f(x)=ax^2+bx+c. tìm a,b,c biết : f(0)=3; f(1)=0; f(3)=0
Cho f(x)= ax^2+bx+c (a,b,c là hằng số khác 0) . Cho biết 3a+b=0. Chứng minh rằng nếu các số m,n thỏa mãn m+n=3 thi f(m)=f(n)
T Nc cđ :
Bài 2: Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Bài 3: Cho hàm số f(x) = ax^2 + bx + c (a, b, c ∈ Z}). Biết f(-1) ⋮ 3; f(0) ⋮ 3; f(1) ⋮ 3. Chứng minh rằng a, b, c đều chia hết cho 3.
Bài 4: Cho đa thức f(x) = ax^3 + bx^2 + cx + d với a là số nguyên dương và f(5) - f(4) = 2019. Chứng minh f(7) - f(2) là hợp số.
cho đa thức f(x) = ax2 + bx +c với a,b,c là các số thực .Biết rằng f(0) ; f(1) ; f(2) có giá trị nguyên . Chứng minh rằng 2a, 2b có giá trị nguyên