Cho hàm số y= f(x) có đạo hàm liên tục trên R, thỏa mãn 2 f ( 2 x ) + f ( 1 - 2 x ) = 12 x 3 . Tìm phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x = 1
A.
B.
C.
D.
Xét các khẳng định sau:
(1) Nếu hàm số y=f(x) xác định trên R thỏa mãn f(-1).f(0)<0 thì đồ thị của hàm số y=f(x) và trục hoành có ít nhất 1 điểm chung.
(2) Nếu hàm số y=f(x) xác định trên R thỏa mãn f(-1).f(0)<0 và f(0).f(1)<0 thì đồ thị của hàm số y=f(x) và trục hoành có ít nhất 2 điểm chung.
Phát biểu nào sau đây đúng?
A. Khẳng định đúng và khẳng định sai.
B. Khẳng định sai và khẳng định đúng.
C. Khẳng định sai và khẳng định sai.
D. Khẳng định đúng và khẳng định đúng.
Cho hàm số y=f(x) có đạo hàm tại x=1. Gọi d1,d2 lần lượt là tiếp tuyến của đồ thị hàm số y=f(x) và y=g(x)=x . f(2x-1) tại điểm có hoành độ x=1 Biết rằng hai đường thẳng d1,d2 vuông góc với nhau. Khẳng định nào dưới đây đúng.
A. f ( 1 ) < 2
B. 2 ≤ f ( 1 ) ≤ 2 2
C. 2 ≤ f ( 1 ) ≤ 2
D. f ( 1 ) ≥ 2 2
Cho hàm số y = f(x) có đạo hàm đến cấp hai liên tục trên R. Biết rằng các tiếp tuyến với đồ thị y = f(x) tại các điểm có hoành độ x = -1, x = 0, x = 1 lần lượt tạo với chiều dương của trục Ox các góc 30 o , 45 o , 60 o
Tính tích phân I = ∫ - 1 0 f ' x . f ' ' x dx + 4 ∫ 0 1 f ' x 3 . f ' ' x dx .
A. .
B. .
C. .
D. .
Cho hàm số y = f(x) có đạo hàm đến cấp hai liên tục trên R. Biết rằng các tiếp tuyến với đồ thị y = f(x) tại các điểm có hoành độ x = -1, x=0, x=1 lần lượt tạo với chiều dương của trục Ox các góc 30 o , 45 o , 60 o
Tính tích phân I = ∫ - 1 0 f ' x . f ' ' x dx + 4 ∫ 0 1 f ' x 3 . f ' ' x dx .
A. .
B. .
C. .
D. .
Cho hàm số y= f(x) =ax3+ bx2+cx+d có đạo hàm là hàm số y= f’ (x) với đồ thị như hình vẽ bên. Biết rằng đồ thị hàm số y= f( x) tiếp xúc với trục hoành tại điểm có hoành độ dương . Khi đó đồ thị hàm số y= f( x) cắt trục tung tại điểm có tung độ là bao nhiêu?
A. 2/3
B. 1
C. 3/2
D. 4/3
Cho các hàm số y = f(x), y = g(x), y = f ( x ) + 3 g ( x ) + 1 . Hệ số góc tiếp tuyến của các đồ thị hàm số đã cho tại điểm có hoành độ x = 1 bằng nhau và khác 0. Khẳng định nào sau đây là đúng?
Cho hàm số y = f(x) = a x + b c x + d ( a,b,c,d ∈ ℝ , - d c ≠ 0) đồ thị hàm số y= f’(x) như hình vẽ.
Biết đồ thị hàm số y= f(x) cắt trục tung tại điểm có tung độ bằng 3. Tìm phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành ?
A. y = x - 3 x + 1
B. y = x + 3 x - 1
C. y = x + 3 x + 1
D. y = x - 3 x - 1
Cho hàm số f(x) có đạo hàm cấp hai f''(x) liên tục trên R và có đồ thị hàm số f(x) như hình vẽ bên. Biết rằng hàm số f(x) đạt cực đại tại điểm x = 1 đường thẳng trong hình vẽ bên là tiếp tuyến của đồ thị hàm số f(x) tại điểm có hoành độ x = 2 . Tích phân ∫ 0 ln 3 e x f " e x + 1 2 d x bằng
A. 8
B. 4
C. 3
D. 6