Gọi A, B lần lượt là các giá trị nhỏ nhất, giá trị lớn nhất của hàm số y= x + m 2 + 2 m x - 2 trên đoạn [3;4]. Tìm tất cả các giá trị thực của tham số m để A+B= 19 2
A. m=1; m=-3
B. m=-1; m=3
C. m=3; m= -3
D. m=-4
Cho hàm số y=f(x) liên tục trên đoạn [-3;4] và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là các giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn[-3;4]. Tính M+m
A. 5
B. 8
C. 7
D. 1
Cho hàm số f(x) = x - 1 2 a x 2 + 4 a x - a + b - 2 , với a,b ∈ ℝ . Biết trên khoảng - 4 3 ; 0 hàm số đạt giá trị lớn nhất tại x = -1. Hỏi trên đoạn - 2 ; - 5 4 , hàm số đạt giá trị nhỏ nhất tại giá trị nào của x?
A. x = - 5 4
B. x = - 4 3
C. x = - 3 2
D. x = -2
Cho hàm số f(x) có đạo hàm là f'(x). Đồ thị của hàm số y = f'(x) được cho như hình vẽ dưới đây:
Biết rằng f(-1) + f(0) < f(1) + f(2). Giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn [-1;2] lần lượt là:
A. f(1);f(2)
B. f(2);f(0)
C. f(0);f(2)
D. f(1);f(-1)
Gọi A, B lần lượt là các giá trị nhỏ nhất, giá trị lớn nhất của hàm số trên đoạn [3;4]. Tìm tất cả các giá trị thực của tham số m để A+B= 19 2
Cho hàm số y= f( x) đạo hàm f’ (x) = -x2- 1. Với các số thực dương a, b thỏa mãn a< b. Giá trị nhỏ nhất của hàm số f( x) trên đoạn [ a; b] bằng
A. f(a)
B. f a b
C. f( b)
D. f a + b 2
Cho hàm số y = x + 1 x - 1 . Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số trên đoạn [-5;-1]. Tính M + m
A. -6
B. 2 3
C. 3 2
D. 6 5
Cho hàm số y = f(x) có đạo hàm f'(x) = x(x+1) x - 2 2 với mọi x ∈ ℝ . Giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-1;2] là
A. f(-1)
B. f(0)
C. f(3)
D. f(2)
Cho a , b ∈ ℝ , 0 < a < b, hàm số y = f(x) có đạo hàm trên ℝ thỏa mãn f'(x) < 0, ∀ x ∈ ( a ; b ) . Giá trị nhỏ nhất của hàm số đã cho trên đoạn [a;b] bằng
A. f(b)
B. f a + b 2
C. f(a)
D. f a b