Cho hàm số f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên.
Số giá trị nguyên của tham số m để phương trình f x + m = m có đúng 6 nghiệm thực phân biệt là
A. 1
B. 3
C. 2
D. 4
Cho hàm số y = f ( x ) liên tục trên R và có đồ thị hàm số đường cong trong hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình | f ( x ) | = m có 4 nghiệm phân biệt.
A. m ∈ (0;3)
B. -3 < m < 1
C. Không có giá trị nào của m.
D. 1 < m < 3
Cho hàm số y=f(x) liên tục trên tập Rvà có đồ thị (C) như hình vẽ. Có bao nhiêu giá trị nguyên dương của tham số m để phương trình
f
2
(
x
)
-
(
m
-
1
)
f
(
x
)
+
m
-
2
có 12 nghiệm phân biệt?
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(cosx)=m có 2 nghiệm phân biệt thuộc ( 0 ; 3 π 2 ] là:
A. [-2;2]
B. (0;2)
C. (-2;2)
D. [0;2)
Cho hàm số y = f ( x ) liên tục trên R và có đồ thị như hình bên dưới
Biết rằng trục hoành là tiệm cận ngang của đồ thị. Tìm tất cả các giá trị thực của tham số m để phương trình f x = 4 m + 2 log 4 2 có hai nghiệm dương phân biệt
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ dưới đây
Tập hợp tất cả các giá trị thực của tham số m để bất phương trình f ( 4 - x 2 ) = m có nghiệm thuộc nửa khoảng [ - 2 ; 3 ) là:
A. (-1;3]
B. ( - 1 ; f 2 ]
C. [-1;3]
D. - 1 ; f 2
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(sin x) = m có nghiệm thuộc khoảng 0 ; π là
Cho hàm số y=f(x) là hàm đa thức với hệ số thực. Hình vẽ bên dưới là một phần đồ thị của hai hàm số: y=f(x) và y=f'(x)
Tập các giá trị của tham số m để phương trình f ( x ) = m e x có hai nghiệm phân biệt trên [0;2] là nửa khoảng [a;b). Tổng a+b gần nhất với giá trị nào sau đây?
A. -0.81
B. -0.54
C. -0.27
D. 0.27
Cho hàm số y=f(x) liên tục trên ℝ ,f(2)=3 và có đồ thị như hình vẽ bên
Có bao nhiêu số nguyên m ∈ - 20 ; 20 để phương trình có 4 nghiệm thực phân biệt. f ( x + m ) = 3
A. 2
B. 18
C. 4
D. 19