Cho hàm số y = f (x) thỏa mãn f(0) = 1, f'(x) liên tục trên R và ∫ 0 3 f ' ( x ) d x = 9 . Giá trị của f(3) là
Cho hàm số f(x) liên tục trên R và thỏa mãn ∫ - 5 1 f ( x ) d x = 9 Tính ∫ 0 2 [ f ( 1 - 3 x ) + 9 ] d x
A. 27.
B. 21.
C. 15.
D. 75.
Cho f(x) là hàm số liên tục trên R thỏa mãn f(x) + f'(x) = x và f(0) = 1. Tính f(1).
A. 2/e
B. 1 / e
C. e
D. e / 2
Cho hàm số y=f(x) liên tục trên R và thỏa mãn f(x) + f( π 3 - x )= 1 2 sin x cos x ( 8 cos 3 x + 1 ) , ∀ x ∈ R Biết tích phân I= ∫ 0 π 3 f ( x ) d x được biểu diễn dưới dạng I= a b ln c d ; a , b , c , d ∈ Z và các phân số a b ; c d là các phân số tối giản. Tính S= a 3 + a b - c + d
Cho hàm số f(x) liên tục trên tập R thỏa mãn f ' x x 2 + 1 = 2 x f x + 1 và f(x) > -1, f(0)=0. Tính f 3 .
A. .
B. 9.
C. 3.
D. 0.
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [1;3] thỏa mãn f(1) = 2 và f(3) = 9. Tính I = ∫ 1 3 f ' x d x .
A. I = 11.
B. I = 7.
C. I = 2.
D. I = 18.
Cho hàm số y = f ( x ) liên tục trên R \ { - 1 ; 0 } thỏa mãn f ( 1 ) = 2 ln 2 + 1 , x ( x + 1 ) f ' ( x ) + ( x + 2 ) f ( x ) = x ( x + 1 ) , ∀ x ∈ R \ { - 1 ; 0 } Biết f ( 2 ) = a + b ln 3 với a, b là hai số hữu tỉ. Tính T = a 2 - b
Cho hàm số f(x) liên tục trên R+ và thoả mãn ∫ f ( x + 1 ) x + 1 d x = 2 ( x + 1 + 3 ) x + 5 + C . Nguyên hàm của hàm số f(2x) trên tập R+ là
Cho hàm f(x) liên tục trên R và thỏa mãn ∫ 0 1 x . f ( x ) d x = 5 . Tính I = - 1 4 ∫ 0 π 4 f ( cos 2 x ) d ( cos 4 x )
A. I = 5
B. I = –5
C. I = 4
D. I = –4