( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Cho hàm số y = f(x) có đạo hàm f’(x) liên tục trên đoạn [0; 1] thỏa mãn f(1) = 1 và I = ∫ 0 1 f x d x = 2 . Tính tích phân I = ∫ 0 1 f ' x d x
A. I = -1.
B. I = 1.
C. I = 2.
D. I = -2.
Cho hàm số f(x) liên tục trên [1; + ∞ ) và ∫ 0 3 f ( x + 1 ) d x = 8 . Tích phân I = ∫ 1 2 x f ( x ) d x bằng
Cho hàm số y=f(x) liên tục trên R và thỏa mãn f(x) + f( π 3 - x )= 1 2 sin x cos x ( 8 cos 3 x + 1 ) , ∀ x ∈ R Biết tích phân I= ∫ 0 π 3 f ( x ) d x được biểu diễn dưới dạng I= a b ln c d ; a , b , c , d ∈ Z và các phân số a b ; c d là các phân số tối giản. Tính S= a 3 + a b - c + d
Cho hàm số f(x) liên tục trên R và thỏa mãn f ( x ) + f π 3 - x = 1 3 sin x cos x ( 8 cos 3 x + 1 ) . Biết tích phân I = ∫ 0 π 3 f ( x ) d x được biểu diễn dưới dạng I = a b ln c d và các phân số là các phân số tối giản. Tính S = a 3 + a b - c + d
A. S=6
B. S=3
C. S=5
D. S=7
Cho hàm số f(x) liên tục trên R và f ( 2 ) = 16 , ∫ 0 2 f ( x ) d x = 4 . Tính tích phân I = ∫ 0 1 x f ' ( 2 x ) d x
A. 13
B. 12
C. 20
D. 7
Cho số thực a>0 Gỉa sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a-x) = 1 Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
A. a/3
B. a/2
C. a
D. 2a/3
Cho hàm số f(x) liên tục trên R vàvà ∀ x ∈ [ 0 ; 2018 ] , ta có f(x)>0 và f(x).f(2018-x)=1 . Giá trị của tích phân I = ∫ 0 2018 1 1 + f ( x ) d x
A. 2018.
B. 0.
C. 1009.
D. 4016.
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(0)=1 và
∫ 0 1 [ f ' ( x ) ] 2 d x = ∫ 0 1 ( x + 1 ) e x d x = e 2 - 1 4
Tính tích phân I = ∫ 0 1 f ( x ) d x
A. I = 2 - e
B. e - 2
C. I = e/2
D. I = (e-1)/2