cho hàm số y=f(x) có f'(x) = (x-2021)^5 * (x-2020)^2020 * (x-2019)^2019. Hàm số f(x) có bao nhiêu điểm cực trị ?
Cho hàm số f x = ln 2019 - ln x + 2 x . Tính tổng S = f ' 1 + f ' 3 + . . . + f ' 2019 .
Cho hàm số f(x)= x(x-1)(x-2) (x-3)... (x-2019).
Tính f'(2019)
A. 2018!
B. 2019!
C. 1
D. 2019
Cho hàm số f ( x ) = ln 2019 - ln x + 1 x . Tổng f ' ( 1 ) + f ' ( 2 ) + f ' ( 3 ) + . . . + f ' ( 2019 ) bằng
A. 2019
B. 2018 2019
C. 2018
D. 2019 2020
Cho hàm số f(x)= x(x+1)(x+2) (x+3)... (x+2019).
Tính f'(0)
A. 2018!
B. 2019!
C. 0
D. 1
Cho hàm số y = f ( x ) có đạo hàm trên R là f ' ( x ) = ( x - 2018 ) ( x - 2019 ) ( x - 2020 ) 4 . Hàm số đã cho có bao nhiêu điểm cực trị?
A. 2
B. 1
C. 4
D. 3
Cho hàm số f(x)= x ( x - 1 ) ( x - 2 ) . . . ( x - 2019 ) . Giá trị của f'(0) là
Cho hàm số f ( x ) = 2 x + e x . Tìm một nguyên hàm F(x) của hàm số f(x) thỏa mãn F(0)=2019
Cho hàm số f ( x ) = a x 4 + b x 2 - 1 ( a , b ∈ ℝ ) . Đồ thị của hàm số y=f(x) như hình vẽ bên. Số nghiệm thực của phương trình 2018.f(x) + 2019 = 0 là:
A. 4
B. 0
C. 3
D. 2