Cho 2 hàm số f ( x ) = x 2 và g ( x ) = x 1 2 . Biết rằng α > 0, f(α) < g(α). Khẳng định nào sau đây là đúng?
A. 0 < α < 1/2
B. 0 < α < 1
C. 1/2 < α < 2
D. α > 1
Cho hàm số f(x) xác định trên ℝ \ - 2 ; 1 thỏa mãn f ' ( x ) = 1 x 2 + x - 2 ; f ( 0 ) = 1 3 và f(3)-f(-3) = 0 Tính giá trị của biểu thức T = f(-4)+f(-1)-f(4)
Tìm tất cả các giá trị thực của tham số α và β sao cho hàm số sau luôn giảm trên R? y = f ( x ) = - x 3 3 + 1 2 sin α + cos α x 2 - 3 2 x sin α cos α - β - 2
A. π 12 + k π ≤ α ≤ π 4 + k π , k ∈ ℤ , β ≥ 2 .
B. π 12 + k π ≤ α ≤ 5 π 12 + k π , k ∈ ℤ , β ≥ 2 .
C. α ≤ π 4 + k π , k ∈ ℤ , β ≥ 2 .
D. α ≥ 5 π 12 + k π , k ∈ ℤ , β ≥ 2 .
Cho hàm số f(x) xác định trên R \ { - 1 ; 1 } thỏa mãn f'(x)= 2 x x 2 - 1 và f ( - 2 ) = 3 , f ( - 1 2 ) = 2 Giá trị của biểu thức f(-2)+f( 1 2 ) bằng
Cho hàm số f(x) xác định trên ℝ \ 1 2 thỏa mãn f ' ( x ) = 2 2 x - 1 ; f ( 0 ) v à f ( 1 ) = 2 Giá trị của biểu thức f ( - 1 ) + f ( 3 ) bằng:
A. 4+ln15
B. 2+ln15
C. 3+ln15
D. ln15
Cho hàm số f(x) xác định trên R \ { 1 2 } thỏa mãn f ' ( x ) = 2 2 x - 1 f (0) = 1 và f(1) = 2. Giá trị của biểu thức f(-1)+f(3) bằng
A. 4 + l n 15
B. 2 + ln 15
C. 3+ ln 15
D. ln 15
Đồ thị hàm số y = f(x) đối xứng với đồ thị hàm số y = log a x ( 0 < a ≠ 1 ) qua điểm I(2; 1). Giá trị của biểu thức f ( 4 - a 2019 ) bằng
A. 2023
B. -2023
C. 2017
D. -2017
Biết F ( x ) = a ln | x - 1 | + b ln | x - 2 | ( a , b ∈ Z ) là một nguyên hàm của hàm số f ( x ) = x + 1 ( x - 1 ) ( x - 2 ) . Giá trị của biểu thức b-a bằng
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) f(x) = ( 25 - x 2 ) trên đoạn [-4; 4]
b) f(x) = | x 2 – 3x + 2| trên đoạn [-10; 10]
c) f(x) = 1/sinx trên đoạn [π/3; 5π/6]
d) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]