Cho hàm số có đồ thị (C). Gọi M là một điểm thuộc đồ thị (C) và d là tổng khoảng cách từ M đến hai tiệm cận của (C). Giá trị nhỏ nhất của d có thể đạt được là
A. 6.
B. 10.
C. 2.
D. 5
Cho hàm số y = x + 1 x - 2 (C). Gọi d là khoảng cách từ giao điểm của hai đường tiệm cận của đồ thị đến một tiếp tuyến của (C). Giá trị lớn nhất mà d có thể đạt được là:
A.
B. .
C. .
D. .
Cho hàm số y = x + 2 x + 1 có đồ thị là (C). Gọi d là khoảng cách từ giao điểm 2 tiệm cận của (C) đến một tiếp tuyến bất kỳ của (C). Giá trị lớn nhất d có thể đạt được là:
A. .
B. .
C. .
D. .
Cho hàm số y = x + 2 x + 1 (C). Gọi d là khoảng cách từ giao điểm hai tiệm cận của đồ thị đến một tiếp tuyến của (C). Giá trị lớn nhất d có thể đạt được là
A. 3 3
B. 3
C. 2
D. 2 2
Cho hàm số y = 2 x + 1 x - 1 có đồ thị (C) . Gọi I là giao điểm của hai tiệm cận. Tiếp tuyến của (C) cắt 2 tiệm cận tại A và B sao cho chu vi tam giác IAB đạt giá trị nhỏ nhất. Khoảng cách lớn nhất từ gốc tọa độ đến tiếp tuyến ∆ gần giá trị nào nhất?
A. 6.
B. 4.
C. 3.
D. 5.
Tọa độ điểm M có hoành độ dương thuộc đồ thị hàm số y = x + 2 x - 2 sao cho tổng khoảng cách từ M đến 2 tiệm cận của đồ thị hàm số đạt giá trị nhỏ nhất là
A.
B.
C.
D.
Cho hàm số y = 2 x + 1 x + 1 có đồ thị (C). Tổng khoảng cách từ một điểm M thuộc (C) đến hai tiệm cận của (C) đạt giá trị nhỏ nhất bằng ?
A.3B.2C. 2 3 D.4
B.2
C. 2 3
D.4
Cho hàm số y = x + 1 x - 1 có đồ thị (C). Tổng khoảng cách từ một điểm M thuộc (C) đến hai tiệm cận của (C) đạt giá trị nhỏ nhất
bằng
A. 3.
B. 4.
C. 2 2
D. 2
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
b) Chứng minh rằng giao điểm I của hai tiệm cận của (C) là tâm đối xứng của (C).
c) Tìm điểm M trên đồ thị của hàm số sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ M đến tiệm cận ngang.