\(\frac{IxI}{IyI}=\frac{3}{2}=>\frac{IxI}{3}=\frac{IyI}{2}=>\frac{IxI^2}{3^2}=\frac{IyI^2}{2^2}=>\frac{x^2}{9}=\frac{y^2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=\frac{5}{5}=1\)
=>x2=9=>x=-3,3
y2=4=>y=-2,2
Vậy (x,y)=(2,3),(2,-3),(-2,3),(-2,-3)