Cho hai số thực x,y khác 0 thay đổi và thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy.\) Tìm giá trị lớn nhất của biểu thức \(M=\frac{1}{x^3+y^3}\)
Cho hai số thực x,y khác 0 thay đổi và thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy.\) Tìm giá trị lớn nhất của biểu thức \(M=\frac{1}{x^3+y^3}\)
Cho hai số thực x,y khác 0 thay đổi và thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy.\) Tìm giá trị lớn nhất của biểu thức \(M=\frac{1}{x^3+y^3}\)
cho x, y là các số thực thay đổi thỏa mãn x^2+y^2-24=6x+8y. Tìm giá trị lớn nhất của biểu thức P=3x+4y
Cho các số , x, y thỏa mãn \(x^2+y^2=1+xy\). Tích của giá trị lớn nhất và giá trị nhỏ nhất của biểu thức\(P=x^4+y^4-x^2y^2\)
gg
Cho hàm số y = x 2 − 2(m + 1 m )x + m (m > 0) xác định trên [−1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [−1; 1] lần lượt là y 1 , y 2 thỏa mãn y 1 - y 2 = 8. Khi đó giá trị của m bằng
A. m = 1
B. m ∈ ∅
C. m = 2
D. m = 1, m = 2
Xét các số thực x, y thỏa mãn
√x2+y2+4x−2y+5+√x2+y2−8x−14y+65=6√2
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của biểu thức T=x2+y2−2x+2y+2.Tính P = m + M
Cho các số thực x, y thỏa mãn x2 + y2 = 1. Giá trị nhỏ nhất của S = x + y bằng:
Cho các số thực x, y thỏa mãn x2 + y2 = 8. Giá trị nhỏ nhất của S = x + y bằng: