Ta sẽ cm bổ đề sau:
Bổ đề: \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\) (Bunyakovski 2 số)
C/m : Ta thấy: \(\left(ad-bc\right)^2\ge0\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)
\(\Leftrightarrow a^2d^2+b^2c^2\ge2abcd\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{c}=\frac{b}{d}\)
Quay lại bài toán, áp dụng bđt bunyakovski ta có :
\(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\ge\left(x+y\right)^2\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\hept{\begin{cases}min\left(x+y\right)=-\sqrt{2}\Leftrightarrow x=y=\frac{-1}{\sqrt{2}}\\max\left(x+y\right)=\sqrt{2}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\end{cases}}\)