`m/n<p/q<=>m/n-p/q<0<=>(mq-np)/(nq)<0(` luôn đúng do `mq<np` và `nq>0)`
Vậy ta có `đfcm`
`m/n<p/q<=>m/n-p/q<0<=>(mq-np)/(nq)<0(` luôn đúng do `mq<np` và `nq>0)`
Vậy ta có `đfcm`
1. Cho hai số hữu tỉ m\n và p\q ( với n>0 , a>0 ) . Chứng tỏ rằng :
a, Nếu m\n < p\q thì mq < np .
b. Nếu mq < np suy ra m\n < p\q
Cho hai số hữu tỉ \(\frac{m}{n}\) và \(\frac{p}{q}\) ( n > 0; p > 0 ) . Chứng minh rằng:
Nếu \(\frac{m}{n}<\frac{p}{q}\) thì \(\frac{m}{n}<\frac{m+p}{n+p}<\frac{p}{q}\)
1. Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)với b > 0, d > 0. Chứng tỏ rằng nếu \(\frac{a}{b}< \frac{c}{d}\)thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2. Cho \(a,b,n\in Z\)và b > 0, n > 0
Hãy so sánh 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{a+n}{b+n}\)
Cho các số nguyên m , n , p, q với m > n > p > q > 0 . Chứng minh rằng : Nếu m/n =p/q thì m+q > n+p
Cho hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)với b > 0 , d > 0 chứng tỏ rằng nếu \(\frac{a}{b}\)<\(\frac{c}{d}\)thì \(\frac{a}{b}\)<\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
giúp mik vc m,n ơi
bài 1 : Cho a thuộc Z , b thuộc N* , n thuộc N* . Chứng minh rằng :
a) Nếu a < b thì \(\frac{a}{b}< \frac{a+n}{b+n}\)
b) Nếu a > b thì \(\frac{a}{b}>\frac{a+n}{b+n}\)
c) Nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}\)
bài 2 : a) Chứng tỏ rằng nếu \(\frac{a}{b}< \frac{c}{d}\)( b > 0,d >0) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
b) Hãy viết ba số hữu tỉ xen giữa \(\frac{-1}{3}\)và \(\frac{-1}{4}\)
Cho hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b > 0, d > 0). Chứng tỏ rằng:
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad < bc;
b) Nếu ad < bc thì \(\frac{a}{b}< \frac{c}{d}\)
Cho bốn điểm M, N, P, Q nằm ngoài đường thẳng xy. Biết M N ⊥ x y ; P Q ⊥ x y và xy là đường trung trực của đoạn thẳng NP. Chứng tỏ rằng bốn điểm M, N, P, Q thẳng hàng
Cho 3 số a; b; c tỉ lệ với các số m; m+n; m+2n
Chứng minh rằng nếu n \(\ne\) 0 thì ta có 4(a - b)(b - c) = (c - a)2