cho các số dương a,b thỏa mãn \(a+b\le1\).cm\(a^2-\frac{3}{4a}-\frac{a}{b}\le\frac{9}{4}\)
cho hai số thực dương thỏa \(a+b\le1\)
CMR \(a^2-\frac{3}{4a}-\frac{a}{b}\le-\frac{9}{4}\)
1. Cho 2 số thực a, b thỏa điều kiện ab = 1, a + b khác 0. Tính GTBT:
\(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
2. Giải phương trình \(2x^2+x+3=3x\sqrt{x+3}\)
3. Chứng minh rằng \(abc\left(a^3-b^3\right)\left(b^3-c^3\right)\left(c^3-a^3\right)⋮7\) với mọi a, b, c nguyên.
4. Cho 2 số dương a, b thỏa mãn \(a+b\le1.\) Chứng minh rằng: \(a^2-\frac{3}{4a}-\frac{a}{b}\le-\frac{9}{4}\)
Cần GẤP nhé m.n!!! m.n ko cần phải làm hết đâu...
a)Cho các số thực không âm a,b,c thỏa mãn điều kiện a+b+c=1
cm: \(a^3+b^3+c^3\le\frac{1}{8}+a^4+b^4+c^4\)
b)Cho a,b,c là các số thực thỏa mãn a+b+c=1. Chứng minh:
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
Cho ba só dương a,b,c thỏa mãn điều kiện abc=1. Chứng minh rằng:
\(\left(a+\frac{1}{b}-1\right)\left(b+\frac{1}{c}-1\right)\left(c+\frac{1}{a}-1\right)\le1\)
Cho a, b, c là các số thực dương thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{8}{9}\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3 . Chứng minh rằng
\(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\le1\)
Cho a.b.c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh
\(\frac{1}{a^2+bc+1}+\frac{1}{b^2+ca+1}+\frac{1}{c^2+ab+1}\le1\)
Cho a,b,c là các số dương thỏa mãn điều kiện 3a+4b+5c\(\le\)12
Chứng minh rằng:
P=\(\frac{ab}{ab+a+b}+\frac{2ac}{ac+a+c}+\frac{3bc}{bc+b+c}\)