Lời giải:
$a+\frac{1}{b}=1\Rightarrow b=\frac{1}{1-a}$
Khi đó:
$A=(a+\frac{1}{a})^2+(b+\frac{1}{b})^2=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4$
$=(1-a)^2+\frac{1}{(1-a)^2}+a^2+\frac{1}{a^2}+4$
Áp dụng BĐT AM-GM:
$A=[\frac{1}{(1-a)^2}+\frac{1}{a^2}]+[(1-a)^2+a^2]$
$\geq \frac{2}{a(1-a)}+2a(1-a)+4$
$=2a(1-a)+\frac{1}{8a(1-a)}+\frac{15}{8a(1-a)}+4$
\(\geq 2\sqrt{2a(1-a).\frac{1}{8a(1-a)}}+\frac{15}{8.\left(\frac{a+1-a}{2}\right)^2}+4\)
\(=2\sqrt{\frac{1}{4}}+\frac{15}{2}+4=\frac{25}{2}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=\frac{1}{2}; b=2$