\(\Leftrightarrow\left(2+a^2+b^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow2+2ab+a^2+b^2+ab\left(a^2+b^2\right)\ge2+2a^2+2b^2+2a^2b^2\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\) (luôn đúng với mọi \(a\ge1;b\ge1\))
Cách khác:
\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)\left[b\left(1+a^2\right)-a\left(1+b^2\right)\right]}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) (luôn đúng).