Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{(\frac{a^2}{b})^2}{c+2}+\frac{(\frac{b^2}{c})^2}{a+2}+\frac{(\frac{c^2}{a})^2}{b+2}\geq \frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{c+2+a+2+b+2}=\frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{a+b+c+6}\)
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq \frac{(a+b+c)^2}{b+c+a}=a+b+c\)
\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{a+b+c+6}\)
Đặt \(t=a+b+c\). Áp dụng BĐT AM-GM: \(t=a+b+c\geq 3\sqrt[3]{abc}=3\)
Ta có:
\(\frac{(a+b+c)^2}{a+b+c+6}=\frac{t^2}{t+6}=\frac{t^2-t-6}{t+6}+1=\frac{(t-3)(t+2)}{t+6}+1\geq 1\) với mọi $t\geq 3$
Do đó: \(\text{VT}\geq \frac{(a+b+c)^2}{a+b+c+6}\geq 1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Cách khác:
Áp dụng BĐT AM-GM:
\(\frac{a^4}{b^2(c+2)}+\frac{c+2}{9}+\frac{b}{3}+\frac{b}{3}\geq 4\sqrt[4]{\frac{a^4}{81}}=\frac{4}{3}a\)
\(\frac{b^4}{c^2(a+2)}+\frac{a+2}{9}+\frac{c}{3}+\frac{c}{3}\geq 4\sqrt[4]{\frac{b^4}{81}}=\frac{4}{3}b\)
\(\frac{c^4}{a^2(b+2)}+\frac{b+2}{9}+\frac{a}{3}+\frac{a}{3}\geq 4\sqrt[4]{\frac{c^4}{81}}=\frac{4}{3}c\)
Cộng theo vế và rút gọn thu được:
\(\frac{a^4}{b^2(c+2)}+\frac{b^4}{c^2(a+2)}+\frac{c^4}{a^2(b+2)}\geq \frac{5}{9}(a+b+c)-\frac{2}{3} \)
\(\geq \frac{5}{9}.3\sqrt[3]{abc}-\frac{2}{3}(\text{AM-GM})=\frac{5}{9}.3-\frac{2}{3}=1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$