Bunhiacopxki:
\(\left(a+b+1\right)\left(a+b+c^2\right)\ge\left(a+b+c\right)^2\Rightarrow\frac{1}{a+b+1}\le\frac{a+b+c^2}{\left(a+b+c\right)^2}\)
Tương tự: \(\frac{1}{b+c+1}\le\frac{b+c+a^2}{\left(a+b+c\right)^2}\) ; \(\frac{1}{c+a+1}\le\frac{c+a+b^2}{\left(a+b+c\right)^2}\)
Cộng vế với vế và so sánh giả thiết
\(\Rightarrow\frac{a^2+b^2+c^2+2\left(a+b+c\right)}{\left(a+b+c\right)^2}\ge1\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow2\left(a+b+c\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a+b+c\ge ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Tag bị lỗi lâu rồi, ko nhận được thông báo khi tag đâu :(