cho a,b>0 cm\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\) nếu \(ab\ge1\)
b) cho a,b,c\(\ge\)1. CMR \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{1}{1+c^4}\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)
1. vs a.b. là các số dương t/m đk a+b+c+ab+ac+bc =6abc. c/m :\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)\(\ge\) 3
2. vs a,b,c là các số dương tmđk a+b+c=2. tìm max
Q= \(\sqrt{2a+bc}+\sqrt{2b+ac}+\sqrt{2c+ab}\)
3. vs hai số thực không âm a,b tm \(a^2+b^2=4\) tìm max bt
M=\(\frac{ab}{a+b+2}\)
4.cho các số thực a,b,c thay đổi luôn luôn tm \(a\ge1,b\ge1,c\ge1\) và ab+bc+ca=9. yimf min và mã bt:
P = \(a^2+b^2+c^2\)
5. tìm min bt P= \(\sqrt{1-x}+\sqrt{1+x}+2\sqrt{x}\)
6. cho bt: P= \(a^4+b^4-ab\) vs a,b là các số thực tm \(a^2+b^2+ab=3\) . tìm min vad max
TẠI HẠ XIN ĐƯỢC CHỈ GIÁO, THỈNH CÁC THÍ CHỦ MỞ MANG TẦM MẮT!!!!!!!!!!!!!!!!!
( dạng này khó quá ta làm không nổi)
Cho a, b, c dương thỏa \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\). Cmr: \(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}\ge1\)
Cho a,b,c>0 . Chứng minh rằng : \(\frac{a^2}{a^2+ab+b^2}+\frac{b^2}{b^2+bc+c^2}+\frac{c^2}{c^2+ac+a^2}\)≥1
cm các bđt : a) \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\) với \(a\ge b\ge c>0\)
b) \(\frac{a+b}{a^2+b^2}+\frac{b+c}{b^2+c^2}+\frac{c+a}{c^2+a^2}\le3\) với \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=ab+bc+ca\end{matrix}\right.\)
c) \(a+b^2+c^2\ge\frac{1}{a}+\frac{1}{b^2}+\frac{1}{c^2}\) với \(a\le b;a\le c;abc=1\)
Ôn tập Bất đẳng thức
1 , Cho a,b,c<3 thỏa mãn abc(a+b+c)=3 . Tìm GTNN của C= \(\frac{a}{\sqrt{9-b^2}}+\frac{b}{\sqrt{9-c^2}}+\frac{c}{\sqrt{9-a^2}}\)
2, Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh a, \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
b, \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
3, Cho a,b,c >0 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tính GTLN của P= \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
4 , Cho a,b,c>0 và \(ab+bc+ca\ge a+b+c\)
Chứng minh \(\frac{a^2}{\sqrt{a^3+8}}+\frac{b^2}{\sqrt{b^3+8}}+\frac{c^2}{\sqrt{c^3+8}}\ge1\)
1. Cho a,b,c > 0. Cmr: a) \(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ca}+\frac{ab}{c^2+2ab}\le1\)
b) \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\)
2. Cho \(x,y,z>0;x+\frac{y}{3}+\frac{z}{5}\ge3;\frac{y}{3}+\frac{z}{5}\ge2;\frac{z}{5}\ge1.MaxP=x^2+y^2+z^2\)
3. Cho \(x>0;y\ge2;2x+y+xy\ge6.MinP=x^3+y^2\)
4. Cho \(0< \alpha< \beta< \gamma\). Giả sử x,y,z > 0 TM \(z\ge\gamma;\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}+\frac{xyz}{\alpha\beta\gamma}=4;\frac{y}{\beta}+\frac{z}{\gamma}+\frac{yz}{\beta\gamma}=3.MinP=x^3+y^3+z^3\)
Cho a,b,c>0 và \(a^2b+b^2c+c^2a=3\)
Chứng minh rằng : \(\frac{ab+bc+ca}{2\left(a^2+b^2+c^2\right)}+\frac{1}{6}\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)≥\(\frac{a+b+c}{3}\)
Cho: a,b,c > 0 và a + b + c = 3.
Chứng minh rằng:
a) \(\frac{a+b}{1+a}+\frac{b+c}{1+b}+\frac{c+a}{1+c}\ge ab+bc+ca\)
b) \(\frac{a}{ab+b^3}+\frac{b}{bc+c^3}+\frac{c}{ca+a^3}\ge\frac{3}{2}\)