Ta có:
\(\left(a^3+3ab^2\right)^2=a^6+6a^4b^2+9a^2b^4=196\)
\(\left(b^3+3a^2b\right)^2=b^6+6a^2b^4+9a^4b^2=169\)
Lại có:
\(\left(a^3+3ab^2\right)^2-\left(b^3+3a^2b\right)^2=27\)
\(\Leftrightarrow a^6+6a^4b^2+9ab^4-b^6-6a^2b^4-9a^4b^2=27\)
\(\Leftrightarrow a^6-3a^4b^2+3a^2b^4-b^6=27\)
\(\Leftrightarrow\left(a^2-b^2\right)^3=27\)
\(\Leftrightarrow a^2-b^2=\sqrt[3]{27}=3\)
\(a^3+3ab^2+b^3+3a^2b=27=\left(a+b\right)^3\Rightarrow a+b=3\)
\(a^3+3ab^2-b^3-3a^2b=1\Rightarrow\left(a-b\right)^3=1\Rightarrow a-b=1\)
\(\Rightarrow a^2-b^2=\left(a-b\right).\left(a+b\right)=3\)
ket ban voi minh di