Cho mặt phẳng ( α ) : 2x + y + z – 1 = 0 và đường thẳng d: x - 1 2 = y 1 = z + 1 - 3
Gọi M là giao điểm của d và ( α ), hãy viết phương trình của đường thẳng ∆ đi qua M vuông góc với d và nằm trong ( α )
Cho điểm M(3;-1;-2) và mặt phẳng α : 3x-y+z+4=0. Phương trình nào sau đây là phương trình mặt phẳng đi qua M và song song với α
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Tìm điểm M' là ảnh của M(4; 2; 1) qua phép đối xứng qua mặt phẳng (α).
Cho mặt phẳng α : 3x+5y-z-2=0 và đường thẳng d : x = 12 + 4 t y = 9 + 3 t z = 1 + t Gọi M là tọa độ giao điểm của đường thẳng d và mặt phẳng α . Viết phương trình mặt phẳng (P) chứa điểm M và vuông góc với đường thẳng d
Cho P : x + y - z - 1 = 0 và Q : - 2 x + z + 4 = 0 và A - 1 ; 1 ; 3 . Gọi α là mặt phẳng qua A, α ⊥ P , α ⊥ Q . Tìm một vectơ pháp tuyến n → của α .
Trong không gian Oxyz cho điểm M(2;1;1) mặt phẳng α : x+y+z-4=0 và mặt cầu (S): x - 3 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?
Trong không gian tọa độ Oxyz cho đường thẳng △ có phương trình x - 1 2 = y + 1 - 1 = z 2 và mặt phẳng ( α ) có phương trình x+y-z-2=0 Tính côsin của góc tạo bởi đường thẳng △ và mặt phẳng ( α )
Cho mặt phẳng (P): x-2y+z+5=0. Viết phương trình mặt phẳng α vuông góc với mặt phẳng (P) và chứa đường thẳng d là giao của hai mặt phẳng P 1 : x - 2 z = 0 và P 2 : 3 x - 2 y + z - 3 = 0
Cho điểm M(1; 4; 2) và mặt phẳng (α): x + y + z – 1 = 0 Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (α).