Chọn C.
Áp dụng công thức tích phân từng phần, ta có
Chọn C.
Áp dụng công thức tích phân từng phần, ta có
Cho hai hàm số liên tục f(x) và g(x) có nguyên hàm lần lượt là F(x) và G(x) trên [0; 2]. Biết F(0) = 0, F(2) = 1, G(2) = 1 và ∫ 0 2 F ( x ) g ( x ) d x = 3 . Tính tích phân hàm: ∫ 0 2 G ( x ) f ( x ) d x
A. I = 3.
B. I = 0.
C. I = -2.
D. I = -4.
Cho hai hàm số liên tục f và g có nguyên hàm lần lượt là F và G trên đoạn [1;2]. Biết rằng F ( 1 ) = 1 , F ( 2 ) = 4 , G 1 = 3 2 , G 2 = 2 v à ∫ 1 2 f x G x d x = 67 12 . Tích phân ∫ 1 2 F x g x d x có giá trị bằng
A. 11 12
B. - 145 12
C. - 11 12
D. 145 12
Cho hai hàm số y=f(x),y=g(x) có đạo hàm là f'(x),g'(x) Đồ thị hàm số f'(x), g'(x) được cho như hinh vẽ dưới đây
Biết rằng f(0)-f(6)<g(0)-g(6) Giá trị lớn nhất, giá trị nhỏ nhất của hàm số h(x)=f(x)-g(x) trên đoạn [0;6] lần lượt là:
A. h(6),h(2)
B. h(0),h(2)
C. h(2),h(6)
D. h(2),h(0)
Cho hàm số y = f(x) liên tục trên R sao cho maxf(x) = f(2) = bằng 84 trên [0; 10] . Xét hàm số g(x) = f(x3+x) - x2 + 2x + m.Tìm m để giá trị lớn nhất của g(x) trên [0; 2]
Cho hàm số f(x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;2] thoả mãn f(0) = 3; f(2) = 12 và ∫ 0 2 ( f ' ( x ) ) 2 f ( x ) d x = 6 Tính f(1)
A. 27/4
B. 25/4
C. 9/2
D. 15/4
Cho hàm số y = f(x), y = g(x) là các hàm số có đạo hàm và liên tục trên [0; 2] và ∫ 0 2 g x f ' x d x = 2 , ∫ 0 2 g ' x f x d x = 3 . Tính tích phân I = ∫ 0 2 [ g x f x ] ' d x .
A. I = –1
. I = 1
C. I = 5
D. I = 6
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
I. Hàm số có 3 điểm cực trị.
II. Hàm số g(x)đạt cực tiểu tại x=0
III. Hàm số g(x) đạt cực đại tại x=2
IV. Hàm số g(x) đồng biến trên khoảng (-2;0)
V. Hàm số g(x) nghịch biến trên khoảng (-1;1)
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A.1
B.4
C.3
D.2
Cho hàm số y = f(x) có đạo hàm f'(x). Hàm số y = f'(x) liên tục trên tập số thực và có bảng biến thiên như sau:
Biết rằng f(-1) = 10 3 , f(2) = 6. Giá trị nhỏ nhất của hàm số g(x) = f 3 ( x ) - 3 f ( x ) trên đoạn [-1;2] bằng
A. 10 3
B. 820 27
C. 730 27
D. 198
Cho hàm số f(x) có đạo hàm là f'(x). Đồ thị của hàm số y = f'(x) cho như hình vẽ.
Biết rằng f(2) + f(4) = f(3) + f(0). Giá trị nhỏ nhất và lớn nhất của f(x) trên đoạn [0;4] lần lượt là
A. f(2), f(0)
B. f(4), f(2)
C. f(0), f(2)
D. f(2), f(4)