a \(\widehat{CBA}\)+ \(\widehat{DBC}\)= 180 độ
suy ra \(\widehat{DBC}\)= 180 độ - \(\widehat{CBA}\)=180 độ -120 độ=60 độ
b Ta có \(\widehat{DBM}\)< \(\widehat{DBC}\)(30<60)
suy ra BM nằm giữa BC và BD
\(\widehat{MBC}\)= \(\widehat{DBC}\)- \(\widehat{DBM}\)= 60 - 30 =30
Vì \(\widehat{MBC}\)= \(\widehat{DBM}\)= 30 độ nên BM là tia phân giác của góc DBC