Cho đường tròn (O;R) và điểm A thuộc (O). Một góc vuông xAy quay quanh A và luôn thỏa mãn Ax,Ay cắt (O). Gọi các giao điểm thứ hai của Ax;Ay với (O) lần lượt là B;C. Đường tròn đường kính AO cắt AB;AC tại các điểm thứ hai tương ứng là M;N. Tia OM cắt (O) tại P. Gọi H là trực tâm tam giác AOP.Chứng minh: a,Tứ giác AMON là hình chứu nhật b,MN//BC c,Tứ giác PHOB nội tiếp d, Xác định vị trí của góc xAy sao cho tam giác AMN có diện tích lớn nhất
cho đường tròn tâm O đường kính AB cố định. Ax và Ay là hai tia thay đổi luôn tạo với nhau góc 60độ và lần lượt cắt đường tròn (O) tại M và N. Đường thẳng BN cắt Ax tại E, đường thẳng BM cắt Ay tại F. Gọi K là trung điểm của đoạn thẳng EF.
a. Chứng minh rằng đoạn thẳng EF có độ dài không đổi
b. Chứng minh rằng OMKN là tứ giác nội tiếp
c. Khi AMN là tam giác đều, gọi C là điểm trên đường tròn (O) khác A, khác N. Đường thẳng qua M và vuông góc với AC cắt NC tại D. Xác định vị trí của điểm C để diện tích am giác MCD là lớn nhất
Cho 2 đường tròn tâm O và O cắt nhau tại A và B dây AC của (O) tiếp xúc với (O ) tại A. Dây AD của (O ) tiếp xúc với (O) tại A Gọi K là điểm đối xứng với A qua trung điểm I của OO . E là điểm đối xứng với A qua B. Chứng minh rằng:
a) AB vuông góc với KB
b) 4 điểm A;C;D;E nằm trên một đường tròn
Cho 2 đường tròn tâm O và O cắt nhau tại A và B dây AC của (O) tiếp xúc với (O ) tại A. Dây AD của (O ) tiếp xúc với (O) tại A Gọi K là điểm đối xứng với A qua trung điểm I của OO . E là điểm đối xứng với A qua B. Chứng minh rằng:
a) AB vuông góc với KB
b) 4 điểm A;C;D;E nằm trên một đường tròn
Cho điểm M bất kì trên đường tròn tâm O đường kính AB. Tiếp tuyến tại M và tại B của (O) cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt MD tại C và cắt BD tại N.
a) Chứng minh DC = DN
b) Chứng minh AC là tiếp tuyến của đường tròn tâm O
c) Gọi H là chân đường vuông góc kẻ từ M xuống AB, I là trung điểm MH. Chứng minh B, C, I thẳng hàng.
d) Qua O kẻ đường vuông góc với AB, cắt (O) tại K (K và M nằm khác phía với đường thẳng AB). Tìm vị trí của M để diện tích tam giác MHK lớn nhất.
cho hai đường tròn (O) và (O') cắt nhau tại A và B .Dây AC của đường tròn (O) tiếp xúc với đường tròn (O') tại A.Dây AD của đường tròn (O') tiếp xúc với đường tròn (O) tại A.Gọi K là điểm đối xứng với A qua trung điểm I của OO' ,E là điểm đối xứng với A và B.cmr:
a)AB vuông góc với KB
b)Bốn điểm A,C,E,D nằm trên cùng một đường tròn
Cho đường tròn (O), từ điểm A ngoài (O) vẽ hai tiếp tuyến AB, AC (B, C là hai tiếp điểm). Gọi H là giao điểm OA và BC. Vẽ đường kính BD của (O). Đường thẳng qua C vuông góc với AB cắt OA tại M, I là trung điểm OC. Đường thẳng vuông góc với BD tại D cắt BC tại E. Chứng minh OE vuông góc AD
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho điểm M bất kì trên đường tròn tâm O đường kính AB. Tiếp tuyến tại M và tại B của (O) cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt MD tại C và cắt BD tại N.
a) Chứng minh DC = DN
b) Chứng minh AC là tiếp tuyến của đường tròn tâm O
c) Gọi H là chân đường vuông góc kẻ từ M xuống AB, I là trung điểm MH. Chứng minh B, C, I thẳng hàng.
d) Qua O kẻ đường vuông góc với AB, cắt (O) tại K (K và M nằm khác phía với đường thẳng AB). Tìm vị trí của M để diện tích tam giác MHK lớn nhất.