Lấy A(3 + t; 1 - t; 2t) thuộc d và B(1 + t'; 2t'; -1 + t') thuộc d'. Ta có MA → = (1 + t; 2 - t; 2t), MB → = (-1 + t'; 1 + 2t'; -1 + t').
M, A, B thẳng hàng ⇔ MB → = k MA →
Từ đó suy ra A(4; 0; 2), B(0; -2; -2.
Lấy A(3 + t; 1 - t; 2t) thuộc d và B(1 + t'; 2t'; -1 + t') thuộc d'. Ta có MA → = (1 + t; 2 - t; 2t), MB → = (-1 + t'; 1 + 2t'; -1 + t').
M, A, B thẳng hàng ⇔ MB → = k MA →
Từ đó suy ra A(4; 0; 2), B(0; -2; -2.
Cho đường thẳng
d : x = 1 y = 1 + t z = - 1 + t
và hai mặt phẳng: (P): x - y + z + 1 = 0 và (Q): 2x + y - z - 4 = 0
Khẳng định nào sau đây là đúng?
A. d // (P) B. d // (Q)
C. d = (P) ∩ (Q) D. d ⊥ (P).
Tìm tọa độ giao điểm M của đường thẳng d:\(\left\{{}\begin{matrix}x=1+2t\\y=-2-t\\z=1-t\end{matrix}\right.\)và (P) :4x-y-z+5=0
A. M(1;1;2)
B. M(1;-1;2)
C. M(1;1;-2)
D. M(-1;-1;2)
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x - 2 - 1 = y - 1 3 = z - 1 2 và d 2 : x = 1 - 3 t y = - 2 + t z = - 1 - t . Phương trình đường thẳng d nằm trong ( α ) : x + 2 y - 3 z - 2 = 0 và cắt hai đường thẳng d1; d2 là:
A. x + 3 5 = y - 2 - 1 = z - 1 1
B. x + 3 - 5 = y - 2 1 = z - 1 - 1
C. x - 3 - 5 = y + 2 1 = z + 1 - 1
D. x + 8 1 = y - 3 3 = z - 4
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 v à ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng ∆1;∆2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d: x = 1 - t y = 2 t z = 2 + 2 t , t ∈ ℝ và mặt phẳng (P): x + y -z -1 = 0 Giao điểm M của d và (P) có tọa độ là
A. M(1;0;2)
B. M(3;−4;−2)
C. M(0;2;4)
D. M(1;1;1)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x=1-2t ; y=1+t; z=t+2 (t ∈ R). Tìm một véc-tơ chỉ phương của đường thẳng d.
A. (-2;1;2)
B. (-2;1;1)
C. (1;1;1)
D. (2;-1;-2).
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 và ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng ∆ song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng Δ1; Δ2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 và ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng ∆ song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng Δ1; Δ2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t
Trong không gian oxyz phương trình đường thẳng d đi qua điểm M(3;0;-1) và có vecto chỉ phương a=(-1;2;3) là
A. \(\left\{{}\begin{matrix}x=3-t\\y=2t\\z=-1+3t\end{matrix}\right.\)
B. \(\left\{{}\begin{matrix}x=-1+3t\\y=2\\z=3-t\end{matrix}\right.\)
C. \(\left\{{}\begin{matrix}x=3+t\\y=2t\\z=-1-3t\end{matrix}\right.\)
D. \(\left\{{}\begin{matrix}x=-1-3t\\y=2\\z=3+t\end{matrix}\right.\)
Trong không gian Oxyz, cho đường thẳng d : x + 2 4 = y - 1 - 4 = z + 2 3 và mặt phẳng (P): 2x-y+2z+1=0. Đường thẳng ∆ đi qua E(-2;1;-2) song song với (P) đồng thời tạo với d góc bé nhất. Biết rằng ∆ có một vector chỉ phương u → = ( m ; n ; 1 ) . Tính T = m 2 - n 2
A. T = -5
B. T = 4
C. T = 3
D. T = -4