Thay x = 0 vào f ( x ) = x 5 + 2 ta có f ( 0 ) = 0 5 + 2 = 2
Thay x = 1 vào g ( x ) = 5 x 3 - 4 x + 2 ta được g ( 1 ) = 5 . 1 3 - 4 . 1 + 2 = 3
Suy ra f(0) < g(1) (do 2 < 3)
Chọn đáp án C
Thay x = 0 vào f ( x ) = x 5 + 2 ta có f ( 0 ) = 0 5 + 2 = 2
Thay x = 1 vào g ( x ) = 5 x 3 - 4 x + 2 ta được g ( 1 ) = 5 . 1 3 - 4 . 1 + 2 = 3
Suy ra f(0) < g(1) (do 2 < 3)
Chọn đáp án C
Cho hai đa thức: f( x)=x^5+2;g(x)=5x^3-4x+2
a)So sánh : f(0) và g(0); f(1) và g(1); f(-1) và g(-1); f(2) và g(2); f(-2) và g(-2).
b) Có thể nói f(x) = g(x) không ? Vì sao ?
Cho 2 đã thức f(x)=\(x^5\)+2 và g(x)=5\(x^3\)-4x+2
So sánh f(0) và g(0);f(1) và g(1);
Cho 2 đã thức f(x)=\(x^5\)+2 và g(x)=5\(x^3\)-4x+2
So sánh f(0) và g(0);f(1) và g(1);f(-1)vafg(-1);f(2)vafg(2);f(-2)vafg(-2)
Có thể kết luận f(x)=g(x) với mọi x thuộc R đc không ?
Cho các đa thức f(x)= x^2+2x; g(t)= 2x^2-3x
Tìm giá trị của biến sao cho
a, F(x)=0, g(t)=0
b,f(x)=-1;g(t)=-1
c,f(x) >0;g(t)>0
d, f(x)<0; g(t)<0
Bài 1. Cho hai đa thức f(x)= 4x4-5x3+3x+2 và g(x)= -4x4+5x3+7. Trong các số -4; -3; 0 và 1, số nào là nghiệm của đa thức f(x) và g(x).
Bài 2. Cho hai đa thức f(x)=-x5+3x2+4x+8 và g(x)= -x5-3x2+4x+2. CMR đa thức f(x)-g(x) không có nghiệm
1. Xác định các đa thức sau:
a) Nhị thức bậc nhất f(x) = ax + b với a≠0, biết f(-1) = 1 và f(1) = -1
b) Tam thức bậc hai \(g\left(x\right)=ax^2+bx+c\) với a≠0, biết g(-2) = 9, g(-1) = 2, g(1)=6
2.a) Đa thức f(x) = ax + b (a≠0). Biết f(0) = 0. Chứng minh f(x) = -f(-x) với mọi x
b) Đa thức f(x) = ax2 + bx + c (a≠0). Biết f(1) = f(-1). Chứng minh f(x) = f(-x) với mọi x.
3. Tìm tổng các hệ số của đa thức sau khi phá ngoặc và sắp xếp, biết:
a) Đa thức \(f\left(x\right)=\left(2x^3-3x^2+2x+1\right)^{10}\)
b) Đa thức \(g\left(x\right)=\left(3x^2-11x+9\right)^{2011}.\left(5x^4+4x^3+3x^2-12x-1\right)^{2012}\)
cho hai đa thức f(X)=AX^2+BX+C VÀ g(X)=CX2+BX+A. chứng minh rằng nếu f(x0)=0 thì g(1/x0)=0
a) Cho hàm số y=f(x)=-2x+3.Tính f(-2);f(-1);f(0);f(-1/2);f(1/2)
b) Cho hàm số y=g(x)=x^2-1.Tính g(-1);g(0);g(1);g(2)
Cho hai đa thức f(x)=ax^2+bx+c và g(x)=cx^2+bx+a.Chứng minh rằng: Nếu f(x0)=0 thì g(1/x0)=0 (với x0 khác 0)