\(a)A\left(x\right)=5+3x^2-x-2x^2\)
\(A\left(x\right)=\left(3x^2-2x^2\right)-x+5\)
\(A\left(x\right)=x^2-x+5\)
\(B\left(x\right)=3x+3-x-x^2\)
\(B\left(x\right)=-x^2+\left(3x-x\right)+3\)
\(B\left(x\right)=-x^2+2x+3\)
\(b)C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(C\left(x\right)=\left(x^2-x+5\right)+\left(-x^2+2x+3\right)\)
\(C\left(x\right)=x^2-x+5+-x^2+2x+3\)
\(C\left(x\right)=\left(x^2-x^2\right)+\left(-x+2x\right)+\left(5+3\right)\)
\(C\left(x\right)=-x+8\)
\(c)D\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(D\left(x\right)=\left(x^2-x+5\right)-\left(-x^2+2x+3\right)\)
\(D\left(x\right)=x^2-x+5+x^2-2x-3\)
\(D\left(x\right)=\left(x^2+x^2\right)+\left(-x-2x\right)+\left(5-3\right)\)
\(D\left(x\right)=2x^2-3x+2\)