Lời giải:
$H=(1+7)+(7^2+7^3)+(7^4+7^5)+....+(7^{2020}+7^{2021})$
$=(1+7)+7^2(1+7)+7^4(1+7)+....+7^{2020}(1+7)$
$=(1+7)(1+7^2+7^4+....+7^{2020})$
$=8(1+7^2+7^4+....+7^{2020})\vdots 8$
Ta có đpcm.
Lời giải:
$H=(1+7)+(7^2+7^3)+(7^4+7^5)+....+(7^{2020}+7^{2021})$
$=(1+7)+7^2(1+7)+7^4(1+7)+....+7^{2020}(1+7)$
$=(1+7)(1+7^2+7^4+....+7^{2020})$
$=8(1+7^2+7^4+....+7^{2020})\vdots 8$
Ta có đpcm.
A=7^1+7^2+7^3+7^4+.....+7^2020
a) Thu gọn A
b) Chứng minh rằng 6a+7=7^2021
c) Chứng minh rằng Achia hết cho 8
d) Chứng minh rằng (a+7^2021) chia hết cho 8
e) so sánh 6a+7 với B=343^12345
Chứng tỏ rằng
a)( 11^1 + 11^2 + 11^3 + ... + 11^7 + 11^8 ) chia hết cho 12
b) ( 7 + 7^2 + 7^3 + 7^4 ) chia hết cho 50
c)( 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 ) chia hết cho 13
giúp mik với!.Các bạn giải nhớ có cách giải luôn nha!Ai làm đúng và nhanh nhất mình sẽ tick cho
Bài 1.:chứng minh rằng:
a/ (7^0+7^1+7^2+7^3+7^4+...+7^2011) chia hết cho 8
b/(5^11+5^12+5^13+5^14+...+5^200) chia hết cho 30
Bài 2 tìm các STN x,y trong mỗi trường hợp sau đây
a/ x.y=11
B/ (2x+1).(3y-2)=12
Cho M = 1/2( 7^2020^2021 - 3^92^94 ). Chứng minh M là số tự nhiên chia hết cho 5
Ai đúng tick nhaa
A) Chứng minh: A=2^1+2^2+2^3+2^4+.........+2^2010 chia hết cho 3 và 7
B)Chứng minh:B=3^1+3^2+3^3+3^4+..........+2^2010 chia hết cho 4 và 13
C) Chứng minh C=5^1+5^2+5^3+5^4+.......+5^2010 chia hết cho 6 và 31
D) Chứng minh D=7^1+7^2+7^3+7^4+........+7^2010 chia hết cho 8 và 57
1.cho 4 số tự nhiên a ,b,c,d . a: 7 dư 6 , b : 7 dư 4 , c : 7 dư 3 , d chia 7 dư 2. chứng minh rằng ; a+b-c chia hết cho 7 , a-b-d chia hết cho 7
2) chứng minh rằng : n . ( n+8) . (n +13 ) chia hết cho 3 ( n là số tự nhiên)
1.cho 4 số tự nhiên a ,b,c,d . a: 7 dư 6 , b : 7 dư 4 , c : 7 dư 3 , d chia 7 dư 2. chứng minh rằng ; a+b-c chia hết cho 7 , a-b-d chia hết cho 7
2) chứng minh rằng : n . ( n+8) . (n +13 ) chia hết cho 3 ( n là số tự nhiên)
7+7 mũ 2+7 mũ 3+7 mũ 4+...+7 mũ 2020+7 mũ 2021.tìm số dư khi tổng đó chia cho 7
Chứng tỏ rằng :
a. ( 10^(0)+8:9
b. (1532+2001) chia hết cho 2
c. (10^(0)+5^(3) chia hết cho 3 và 9
d. (11^(1)+11^(2)+11^(3)+...+11^(7)+11^(8) chia hết cho 12
e. (7+7^(2)+7^(3)+7^(4) chia hết cho 50
f. (3+3^(2)+3^(3)+3^(4)+3^(5)+3^(6) chia hết cho 13