Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Anh

Cho góc vuông xOy, điểm M nằm trong góc đó. Gọi N là điểm đối xứng với M qua Ox, P là điểm đối xứng với M qua Oy. Chứng minh rằng P và N đối xứng nhau qua O.

Thanh Hoàng Thanh
3 tháng 12 2021 lúc 22:58

Gọi giao điểm của MN và Ox là điểm A; giao điểm của MN và Oy là điểm B.

Ta có: N là điểm đối xứng với M qua Ox (gt).

           O \(\in\) Ox.

=> \(\left\{{}\begin{matrix}OA\perp MN.\\\text{ON = OM.(1)}\end{matrix}\right.\) 

Ta có: P là điểm đối xứng với M qua Oy (gt).

           O \(\in\) Oy.

=> \(\left\{{}\begin{matrix}OB\perp MP.\\\text{OM = OP.(2)}\end{matrix}\right.\)

Từ (1) và (2) => OP = ON = OM.

Xét tam giác NOM có: ON = OM (cmt).

=> Tam giác NOM cân tại O.

Mà OA là đường cao (do OA vuông góc MN).

=> OA là phân giác của ^NOM (Tính chất các đường trong tam giác cân).

=> ^NOA = ^AOM.

Xét tam giác MOP có: OP = OM (cmt).

=> Tam giác MOM cân tại O.

Mà OB là đường cao (do OB vuông góc MP).

=> OB là phân giác của ^MOP (Tính chất các đường trong tam giác cân).

=> ^MOB = ^BOP.

Ta có: ^NOA + ^AOM + ^MOB + ^BOP.

=  2. ^AOM + 2. ^MOB.

= 2. (^AOM + ^MOB).

= 2. ^AOB.

= 2. 90o = 180o.

=> 3 điểm N; O; P thẳng hàng.

Mà OP = ON (cmt).

=> O là trung điểm của NP.

=> P và N đối xứng nhau qua O (đpcm).

 

 


Các câu hỏi tương tự
Lê Tú
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Le gia Huy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
giang đào phương
Xem chi tiết
Phạm Hoàng Khánh Chi
Xem chi tiết
Ôn Cẩm Minh
Xem chi tiết
Jaki Natsumi
Xem chi tiết