Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A,C. Trên tia Oy lấy hai điểm B và D sao cho OA = OB , AC = BD. a) Chứng minh tam giác AOD = tam giác BOC b) Gọi E là giao điểm AD và BC, chứng minh tam giác EAC bằng tam giác EBD. c) chứng minh OE là phân giác của góc xOy và OE vuông góc với CD . Mọi người giúp mình câu c nhé, mình like cho
Ta có
OB=OA (gt); BD=AC (gt)
=> OB+BD=OA+AC => OD=OC
Xét tg AOD và tg BOC có
OD=OC (cmt); OA=OB (gt); \(\widehat{xOy}\) chung => tg AOD = tg BOC (c.g.c)
b/
Ta có tg AOD = tg BOC (cmt)
\(\Rightarrow\widehat{OAD}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{CAE}=\widehat{OAC}=180^o\)
\(\widehat{OBC}+\widehat{DBE}=\widehat{OBD}=180^o\)
\(\Rightarrow\widehat{OAC}=\widehat{OBD}\)
Xét tg EAC và tg EBD có
\(\widehat{OAC}=\widehat{OBD}\) (cmt)
tg AOD = tg BOC (cmt) \(\Rightarrow\widehat{ACE}=\widehat{BDE}\)
AC=BD (gt)
=> tg EAC = tg EBD (g.c.g)
c/
Xét tg OAE và tg OBE có
OA=OB (gt); OE chung
tg EAC = tg EBD (cmt) => AE=BE
=> tg OAE = tg OBE (c.c.c) \(\Rightarrow\widehat{xOE}=\widehat{yOE}\) => OE là phân giác góc \(\widehat{xOy}\)
Xét tg OCD có
OC=OD (cmt) => tg OCD cân tại O
\(\widehat{xOE}=\widehat{yOE}\) (cmt)
\(\Rightarrow OE\perp CD\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)