Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
Cho góc α thỏa mãn điều kiện π < α < 3 π 2 và tan α = 2
Tính giá trị của biểu thức M = sin 2 α + sin α + π 2 + sin 5 π 2 - 2 α
Cho góc α thỏa mãn π < α < 3 π 2 và sin α -2cos α =1.Tính A= 2tan α -cot α
A. 6
B. 1 6
C. 2
D. 1 2
Cho góc α thỏa mãn: cos α = 3 5 v à - π < α < 0 .Tính giá trị biểu thức: A = sin 2 α - cos 2 α
A. - 26 25
B. - 13 25
C. 3 25
D. - 17 25
Cho góc α thỏa mãn: π 2 < α < π và sin α + π .Tính tan 7 π 3 - α
A. 3 2
B. - 2
C. - 2 2
D. 4 2
Cho góc α thỏa mãn π 2 < α < π và sin α + π = - 1 3 . Tính tan 7 π 2 - α
A. 3 2
B. - 2
C. - 2 2
D. 4 2
Cho dãy số ( b n ) có số hạng tổng quát là b n = sin α + sin 2 α + . . . + sin n α với α ≠ π / 2 + k π . Tìm giới hạn của ( b n )
Cho góc α thỏa mãn π < α < 3 π 2 và sinα - 2 cosα = 1
Tính A= 2 tan α - c o t α
Cho góc α thỏa mãn: π < α < 3 π 2 và A = sin 2 α + cos α + π 2