cho tam giác ABc có trực tâm AH. Gọi M và N lần lượt là trung điểm của BC và AC. Gọi O là giao điểm của các đường trung trực của tam giác và G là trọng tâm của tam giác. Chứng minh:
a) ΔOMN∼ΔHAB⇒AH=2OMΔOMN∼ΔHAB⇒AH=2OM
b) ΔHAG∼ΔOMGΔHAG∼ΔOMG
c) H, G, O thẳng hàng, GH = 2.GO
Bài 2.Cho tam giác ABC, trực tâm H.Gọi M là trung điểm của BC, điểm D đối xứng vớiđiểmHqua điểm M.
1)Chứng minh góc𝐴𝐵𝐷̂=900.
2)Chứng minh trung điểm O của AD là tâm đường tròn ngoại tiếp tam giác ABC.
3)Gọi G là giao điểm của OH với AM. Chứng minh G là trọng tâm tam giác ABC
cho tam giác ABC với AB = 5cm, AC = 6cm, BC = 7cm. Gọi G là trọng tâm của tam giác ABC, O là giao điểm của 2 tia phân giác trong của tam giác ABC. Chứng minh rằng GO // AC
cho tam giác ABC có đường trung tuyến AM và G là trọng tâm của tam giác ABC. Gọi K,N,H là các điểm đối xứng của G qua A,B,C. Gọi T là giao điểm của tia KG với NH.
a/ Chứng minh M là trung điểm GT
b/ Chứng minh G là trọng tâm của tam giác KNH
Cho tam giác nhọn ABC. Gọi M, N theo thứ tự là trung điểm của BC, AC. Gọi O là giao điểm các đường trung trực, H là trực tâm, G là trọng tâm của tam giác ABC
a. Chứng minh: tam giác OMN đồng dạng với tam giác HAB
b. So sánh độ dài AH và OM
c. Chứng minh: tam giác HAG đồng dạng với tam giác OMG
d. Chứng minh: H, O, G thẳng hàng và GH= 2*OG
Câu 3. Cho tam giác ABC có AC=2AB và 4D là đường phân giác. Gọi M là trung điểm AC và E là trung điểm của AM, AD cắt BE tại G. Chứng minh rằng: 1. Tam giác ABC đồng dạng với tam giác AEB 2. G là trọng tâm của tgABM 3. Tứ giác BGMD là hình thoi
giúp e ý thức 3 với ạ huhu
Cho tam giác ABC, G là trọng tâm của tam giác. Gọi E,F,H lần lượt là trung điểm của AG, BG, CG. CM tam giác EFH và ABC đồng dạng với nhau và G là trọng tâm tam giác EFH
cho tam giác abc có M trung điểm của BC ,N là trung điểm của AC ,đường trung trực BC cắt dường trung trực của AC tại O,gọi H là trực tâm tam giác ABC
a cm tam giác AHB đồng dạng tam giác MNO
b gọi G là giao điểm của OH với AM cmr G là trọng tâm của tam giác ABC