Cho f(x)=a0+a1.cosx+a2.cos2x+...+an.cosnxf(x)=a0+a1.cosx+a2.cos2x+...+an.cosnx
biết f(x)>0∀x∈Rf(x)>0∀x∈R
cmr a0>0
Bài 3. Rút gọn biểu thức: a)x+3+√x² - 6x +9 (x ≤3) b)√x² + 4x +4-√√x² (-2≤x≤0) C)√x²-2x+1 phần x-1 -(x>1) d) x-2/+ √x²-4x+4 x-2 (x1. F,2(a−1) –5a Với a0
Cách kết luận nghiệm phương trình
giả dụ 1 hệ phương trình nghiệm x,y cần đặt ẩn phụ là a và b. nếu a và b có 2 nghiệm, vd a= a1, a =a2, b=b1 và b=b2 thì khi giải x,y mình có ghép nghiệm : a1 và b1, a1 và b2, a2 và b1, a2 và b2 được không. và nếu kết luận nghiệm dư có bị trừ điểm không ?
Cho hàm số f x = = x + 1 2 x + 3 . Tính f ( a 2 ) với a < 0 .
A. f ( a 2 ) = a + 1 3 + 2 a
B. f ( a 2 ) = 2 a + 1 3 − 2 a
C. f ( a 2 ) = 2 a − 1 3 + 2 a
D. f ( a 2 ) = 1 − a 3 − 2 a
giúp với ạ! mình tik cho
1. giải hệ phương trình sau :
\(\hept{\begin{cases}x^2+y^2+x+y=18\\xy\left(x+1\right)\left(y+1\right)=72\end{cases}}\)
2. Tìm các số dương a1;a2;a3 thỏa mãn
\(\hept{\begin{cases}a1+a2+a3=3\\\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}=3\end{cases}}\)
Cho các số x và y có dạng: x = a 1 2 + b 1 và y = a 2 2 + b 2 , trong đó a 1 , a 2 , b 1 , b 2 là các số hữu tỉ. Chứng minh: x/y với y ≠ 0 cũng có dạng a 2 + b với a và b là các số hữu tỉ.
1,cho biểu thức
P=(\(\frac{x\sqrt{x}}{x-1}\)_ \(\frac{3\sqrt{x}}{\sqrt{x}+1}\)) : \(\frac{x-\sqrt{x}}{4\sqrt{x}+4}\)
a, tìm x để P có nghĩa
b, rút gon P
c, tìm x thuộc Z để P thuộc Z
2,cho 100 số tự nhiên a1 , a2, a3....a100 thỏa mãn
\(\frac{1}{\sqrt{a1}}\)+\(\frac{1}{\sqrt{a2}}\)+\(\frac{1}{\sqrt{a3}}\)......+\(\frac{1}{\sqrt{a100}}\)=19
chứng minh rằng trong 100 số đó tồn tại 2 số bằng nhau
mọi người giúp mình với ak. mình cảm ơn nhiều
Giải pt
a1)1/3 căn x-2 -2/3 căn 9x-18 +6 căn x-2/81 =-4
a2)căn 9x+27 +4 căn x+3 -3/4 căn 16x+48 =0
a3)căn 1-x +căn 4-4x -1/3 căn 16-16x +5=0
a4)căn x-3=3-x
a5)căn x^2-1 -x^2+1=0
b1)căn x^2-2x+1 =x^2-1
b2)căn 4x^2-9 = 2 căn 2x+3
b3)3 căn x^2-1 +2 căn x+1=0
b4)căn x^2-4 +căn x^2+4x+4 =0
b5)căn 4x^2-20x+25 +4x^2=25
Giúp mình với
Rút gọn biểu thức: P = 1 − a a 1 − a + a . 1 − a 1 − a 2 (với a ≥ 0;a ≠ 1)
A. a + 1
B. a
C. 1
D. 3 a + 1