\(f\left(x\right)=2x^2-7x+1\)
=> \(2.f\left(x\right)=4x^2-14x+2\)
=> \(2.f\left(x\right)=\left(2x\right)^2-2.2x.\frac{7}{2}+\frac{49}{4}-\frac{49}{2}+2\)
=> \(2.f\left(x\right)=\left(2x-\frac{7}{2}\right)^2-\frac{45}{2}\)
Có \(\left(2x-\frac{7}{2}\right)^2\ge0\)với mọi x
=> \(\left(2x-\frac{7}{2}\right)^2-\frac{45}{2}\ge\frac{-45}{2}\)với mọi x
=> \(2.f\left(x\right)\ge\frac{-45}{2}\)với mọi x
=> \(f\left(x\right)\ge\frac{-45}{4}\) với mọi x
Dấu "=" xảy ra <=> \(\left(2x-\frac{7}{2}\right)^2=0\)
<=> \(2x-\frac{7}{2}=0\) <=> \(2x=\frac{7}{2}\)<=> \(x=\frac{7}{4}\)
KL: GTNN của f(x) = \(\frac{-45}{4}\)<=> \(x=\frac{7}{4}\)