Vì f(x1.x2)=f(x10.f(x2) nên f(4)=f(2.2)=f(2).f(2)=5.5=25
f(8)=f(4.2)=f(4).f(4).f(2)=25.5=125
Vậy f(8)=125
Vì f(x1.x2)=f(x10.f(x2) nên f(4)=f(2.2)=f(2).f(2)=5.5=25
f(8)=f(4.2)=f(4).f(4).f(2)=25.5=125
Vậy f(8)=125
Cho hàm số f(x) xác định với mọi x thỏa mãn điều kiện f(x1x2)=f(x1)f(x2)=5 và f(2)=5. Tínhf(8)
cho hàm số f(x) xác định với mọi x thoả mãn f(x1.x2)=f(x1).f(x2) và f(2)=0,75 tính f(8)
cho hàm số f(x) xác định với mọi x thoả mãn f(x1.x2)=f(x1).f(x2) và f(2)=0,75 tính f(8)
cho hàm số y=f(x) xác định với mọi x thuộc Q thỏa mãn với mọi x1,x2 thuộc Q thì f(x1+x2) và f(100) =2020. Tính f(-100)
cho hàm số \(f\left(x\right)\)xác định với mọi x và thỏa mãn điều kiện : \(f\left(x1.x2\right)=f\left(x1\right).f\left(x2\right)\)và \(f\left(3\right)=-2\).Tính A = \(f\left(243\right)+2050\)
cho hàm số f(x) thỏa mãn f(x1x2)=f(x1)f(x2) và f(2)=10. Tính f(16)
1, chứng minh rằng: a^2+b^2>hoặc=2*a*b
2, cho f(z) là hàm số xác định với mọi x, thõa mãn: f(x1*x2)=f(x1)*f(x2) và f(2)=5. Tính f(8)
cho hàm số f(x) xác định với mọi x khác 0 thỏa mãn
a) f(1)=1
b)f(1/x)=1/x^2.f(x)
c) f(x1+x2)=f(x1)+f(x2) với mọi x1 , x2 khác 0 , x1+x2 khác 0 . CTR f(5/7)=5/7
Cho f(x) là hàm số xác định với mọi x thỏa mãn điều kiện f(x1.x2)=f(x1).f(x2) và f(s)=10. Tính f(32)