a: \(f'\left(x\right)=\dfrac{\left(2x+2\right)'\cdot\left(x-1\right)-\left(2x+2\right)\cdot\left(x-1\right)'}{\left(x-1\right)^2}\)
\(=\dfrac{2\left(x-1\right)-2x-2}{\left(x-1\right)^2}=\dfrac{-4}{\left(x-1\right)^2}\)
y-y0=f'(x0)*(x-x0)
=>y=y0+f'(x0)*(x-x0)=f(x0)+f'(x0)(x-x0)
(d)//-4x+8 nên f(x0)=-4
=>2x+2=-4x+4
=>6x=2
=>x=1/3
f'(1/3)=-4/(1/3-1)^2=-9
y=-4+(-9)(x-1/3)=-4-9x+3=-9x-1
b: (d) vuông góc y=4x+3
=>(d): y=-1/4x+b
(d): y=f(x0)+f'(x0)*(x-x0)
=>f(x0)=-1/4
=>2x+2=-1/4(x-1)=-1/4x+1/4
=>9/4x=-7/4
=>x=-7/9
f'(-7/9)=-4/(-7/9-1)^2=-81/64
y=f(-7/9)+f'(-7/9)*(x+7/9)
=-1/4-81/64(x+7/9)
=-81/64x-79/64