\(f\left(x\right)=7x^2+5x\)
\(f\left(x\right)=5\left(x^2+x\right)+2x^2\)
\(f\left(x\right)=5\left(x^2+x+\dfrac{1}{4}\right)+2x^2-\dfrac{5}{4}\)
\(f\left(x\right)=5\left(x+\dfrac{1}{2}\right)^2+2x^2-\dfrac{5}{4}^2\ge-\dfrac{5}{4}\)
Dấu "=" xảy ra `<=>x+1/2=0`
`<=>x=-1/2`
Vậy \(Min_{f\left(x\right)}=-\dfrac{5}{4}\) khi \(x=-\dfrac{1}{2}\)